
Presorted
Standard

US Postage
PAID

St. Croix Press

Enhanced Flash 8 Video Features:

• New VP6 codec delivers higher quality video
at the same bit rate

• 8-bit alpha channel transparency enables
you to blend video with other elements

• Improved live video capabilities

VitalStream Complete
Toolset for Flash:

• MediaConsole®
• MediaOps™ SDK
• Flash Authentication
• Reporting Dashboard

Stay Ahead of the Competition With VitalStream
and the Enhanced Video Features in Flash 8

Call (800) 254-7554
Visit www.vitalstream.com

With over two years of experience in delivering much of today’s most popular media, VitalStream® is the
first and most experienced Flash™ video streaming service provider.

© 2000 - 2005 VitalStream, Inc. All rights reserved.

Take Advantage of the Enhanced Video Features in Macromedia Flash 8
Call (800) 254-7554 or Download Tutorials at www.vitalstream.com/go/mxdj

Integrate Streaming Media
Into Your Flash Projects

february 2006

36 Display a List of Recordings
for a Meeting
Recording over the web
by joseph d. baarsch

2 • 2006� • mxdj.com

18 Best Practices for Flash
Player Detection
Can Flash detection be truly effective?
by robert hoekman

40 Adding Right-Click
Functionality
A solution that simulates
right-click functionality
by steven shongrunden

24 Using File Object for
Video on Demand
and MP3 Playback
Flash Media Server 2
by robert sandie

28 The Low-Down on Pop-Up
Menus in Fireworks 8
The creation of a menu in
various modes
by murray r. summers

32 Introducing COLA
COLA in a Nutshell
by ted patrick

7 Building a Forum with
Dreamweaver
Part 2
by marius zaharia & cristian ivascu

44 Integrating Remote
 Sharded Objects
Flash Communication Server
by michael labriola

n Part 1 of this tutorial, we taught you
how to pull information from a data-
base in order to set up a forum front

end and how to style it with CSS. In this
article, you will see how easy it is to build a
user authentication system for your forum.

Setting Up User
Authentication
 In the following sections of this tuto-
rial, you will use ImpAKT to build a user
authentication system for your forum.
You need authentication to prevent
pranksters from posting a load of gar-
bage to your forum and getting away
with it. If users want to post messages to
the forum, they must register an account,
activate it, and then log in. Only then
will they be able to post messages to the
forum.
 To build the user authentication sys-
tem, you will do the following:
• Configure user login settings from the

InterAKT Control Panel.
• Create a user registration page.
• Create the user login page.
• Create a logout link.
• Use conditional regions to control

which content is public and which is
private.

configuring Login Settings
 The InterAKT Control Panel comes
with your ImpAKT installation and is a
central place for all configuration options
for your site. The InterAKT Control Panel
can be accessed from the MX Kollection
tab of the Insert bar.
 Alternatively, you can access the
InterAKT Control Panel by clicking the
Server Behaviors tab > MX Kollection
submenu.
 The InterAKT Control Panel offers a
quick and convenient way to configure
the most common settings for your
development environment and for your
site. Once configured, the settings will
be remembered, thus saving you a lot of
time.

 Here are just a few of the settings you
can configure with the InterAKT Control
Panel:
• Date formats: Change the date and

time formats for the pages built with
ImpAKT to match your specific region-
al settings (American, German, and so
on).

• Language settings: Change the lan-
guage for form buttons, error mes-
sages, labels, and hints generated by
ImpAKT. You can choose one of the
predefined 11 languages.

• Debugging mode: Configure the level
of detail of error messages or set the
error reporting method (errors can be
sent by e-mail to the webmaster or
logged to a file on the server).

• Login settings: Configure the user
authentication options.

• E-mail settings: Configure the outgo-
ing e-mail server, port, user name, and
password.

• CSS skins: Change the look of the
entire site by selecting a different CSS
skin.

• User interface persistence and data-
base caching: Enable these settings to
speed up your work. If user interface
persistence is enabled, all ImpAKT
interfaces will remember the settings
you entered the last time.

 All ImpAKT interfaces feature contex-
tual help—short instructions that guide
you through configuring each setting.
 In addition to these settings, you
can also configure an image processing
library, perform product upgrades, or
update your site.
 The Login Settings section is the
place where you configure all user
authentication options, including data-
base information, password encryption,
user levels, and redirect pages. Follow
these steps to configure the login set-
tings:
• In the InterAKT Control Panel, click

the Login Settings icon. This opens a

Group Publisher Jeremy Geelan
Art director Louis F. Cuffari

EDITORIAL BOARD
dreamweaver Editor
Dave McFarland
Flash Editor
Brian Eubanks
Fireworks Editor
Joyce J. Evans
FreeHand Editor
Louis F. Cuffari
director Editor
Andrew Phelps
captivate Editor
Tom Green

INTERNATIONAL ADVISORY BOARD
Jens Christian Brynildsen Norway,
David Hurrows UK, Joshua Davis USA,
Jon Gay USA, Craig Goodman USA,
Phillip Kerman USA, Danny Mavromatis USA,
Colin Moock canada, Jesse Nieminen USA,
Gary Rosenzweig USA, John Tidwell USA

EDITORIAL
Editor
Nancy Valentine, 201 802-3044
nancy@sys-con.com

Associate Editor
 Seta Papazian, 201 802-3052
seta@sys-con.com

Technical Editors
Jesse Warden • Sarge Sargent

To submit a proposal for an article, go to
http://grids.sys-con.com/proposal.

Subscriptions
E-mail: subscribe@sys-con.com
U.S. Toll Free: 888 303-5282
International: 201 802-3012
Fax: 201 782-9600
Cover Price U.S. $5.99
U.S. $29.99 (12 issues/1 year)
Canada/Mexico: $49.99/year
International: $59.99/year
Credit Card, U.S. Banks or Money Orders
Back Issues: $12/each

Editorial and Advertising offices
Postmaster: Send all address changes to:
SYS-CON Media
135 Chestnut Ridge Rd.
Montvale, NJ 07645

Worldwide Newsstand distribution
Curtis Circulation Company, New Milford, NJ

List Rental Information
Kevin Collopy: 845 731-2684,
kevin.collopy@edithroman.com,
Frank Cipolla: 845 731-3832,
frank.cipolla@epostdirect.com

Promotional Reprints
Megan Mussa
megan@sys-con.com

copyright © 2006
by SYS-CON Publications, Inc. All rights
reserved. No part of this publication may be
reproduced or transmitted in any form or by
any means, electronic or mechanical, includ-
ing photocopy or any information storage and
retrieval system, without written permission.

MX Developer’s Journal (ISSN#1546-2242)
is published monthly (12 times a year) by
SYS-CON Publications, Inc., 135 Chestnut
Ridge Road, Montvale, NJ 07645.

SYS-CON Media and SYS-CON Publications,
Inc., reserve the right to revise, republish,
and authorize its readers to use the articles
submitted for publication. Macromedia and
Macromedia products are trademarks or
registered trademarks of Macromedia, Inc.
in the United States and other countries.
SYS-CON Publications, Inc., is independent
of Macromedia. All brand and product names
used on these pages are trade names, service
marks or trademarks of their respective com-
panies.

tu
to

ria
l

i
Part 2

marius zaharia & cristian ivascu

Building a Forum with
Dreamweaver

This article originally
appeared on
www.macromedia.com/
devnet. Reprinted with
 permission.

mxdj.com • �

dialog box showing four tabs: Options,
Database, Session, and User Levels.

• Configure the Options tab:
 For increased security, passwords will

be encrypted in the database
 For this example, the forum will not

use access levels, so set the restriction
to use user name and password only

• Leave the Auto Login Validity value at
its default setting. Users will be able to
automatically log in to the forum. They
will be asked to authenticate again
only if 30 days have passed since the
last time they visited the forum.

• In the Database tab, define which table
stores the user information and what
columns to use for authentication:

 Select the database connection (con-
nForum) and the table that stores user
information (user_usr). The primary key is
automatically detected and set to id_usr.
 From the Username pop-up menu,
select the name_usr column.
 From the Password pop-up menu,
select the password_usr column.
 From the E-mail pop-up menu, select
the email_usr column.
 From the Active pop-up menu, select
the active_usr column. If you specify a col-
umn that stores the account status (active/
inactive), account activation will be avail-
able. When a user registers an account, an
e-mail message will be sent containing an
activation link. Unless the user clicks that
link, the account cannot be used.

 In the Random key pop-up menu,
select the randomkey_usr column.
 A random key consists of a randomly
generated set of alphanumeric characters
used for improving website security. A
random key is commonly used in user
account activation, online purchases,
or other activities that use URLs that
ought to be difficult to guess. This pre-
vents potentially malevolent users from
accessing the URLs by directly entering
them in the browser window in order to
activate accounts for other users. ImpAKT
automatically generates unique random
keys for each user and stores them in the
specified column.
• In the Session tab, you can define

which session variables to create upon
login and what information to store in
them. By default, two variables will be
created: kt_login_id (stores the user’s
unique ID) and kt_login_user (stores
the user name). You don’t need addi-
tional session variables for this tutorial,
so leave this tab as is.

• Because the forum does not use access
levels, you need to define on the User
Levels tab only those pages to redirect
the user to. You have to set the login
page and the pages to be redirected to
when authentication succeeds or fails.
Use the login.php page from the site
root for the Login Page and Default
Redirect on Fail text boxes. When the
login is successful, the user must be
redirected to the forum home page.

• Click OK to apply the changes and
then click Close to exit the InterAKT
Control Panel.

 Because sending e-mail notifications
for account activation is part of the user
registration process, you will also need to
configure the e-mail settings as explained
in the following section.

configuring E-mail Settings
 Forum users will receive several auto-
matic e-mail messages:
• Account activation e-mail
• Welcome message after activation
• Password reminder e-mail
• Topic reply notifications

 This is why you need to set an outgo-
ing e-mail server. You can configure e-mail
settings from the InterAKT Control Panel
by clicking the E-mail Settings section.

 In the dialog box that opens, you can
configure the following:
• Outgoing server’s name or IP address;

if you are not sure about this, consult
your network administrator

• Port number (25 by default)
• Username and password used to log in

to the mail server (if required)
• Default sender’s e-mail address; this

will appear in the From field in all mes-
sage headers sent from the forum

 Click OK to save the configuration,
then click Close to exit the control panel.
You have finished configuring user
authentication for your site.
 In the next section, you will build the
user registration form.

Building the User
Registration Page
 To post messages, a user must have
an active account. In this section, you
will build the page that enables users
to register to the forum by filling in a
user name, password, and valid e-mail
address, and by uploading a profile
photo—all without writing a single line of
code.
 The page you will work on is register.
php. The page layout is already created
and is similar to the other forum pages

 You will build the registration form
with the User Registration Wizard and
then add a file upload feature with the
Upload and Resize Image server behavior
from ImpAKT.

Using the User Registration
Wizard
 To build the registration form, follow
these steps:
• Delete the placeholder text (“Register

form here”) from the main <div> tag.
• Go to the MX Kollection tab of

the Insert bar and click the User
Registration Wizard icon to open the
wizard.

• Step 1 of the wizard displays the con-
nection and table settings you made in
the InterAKT Control Panel.

• Click Next to proceed to Step 2, where
you can define the form fields to
display. The Form fields grid displays
all the table columns that can be dis-
played as form elements. You can add
or remove fields from the grid by click-

� • mxdj.com 2 • 2006

SYS-CON MEDIA

President & cEo

Fuat Kircaali, 201 802-3001

fuat@sys-con.com

Group Publisher

Jeremy Geelan, 201 802-3040

jeremy@sys-con.com

ADVERTISING

Senior Vice President, Sales &

marketing

Carmen Gonzalez, 201 802-3021

carmen@sys-con.com

Vice President, Sales & marketing

Miles Silverman , 201 802-3029

miles@sys-con.com

Advertising Sales director

Robyn Forma, 201 802-3022

robyn@sys-con.com

Advertising Sales manager

Megan Mussa, 201 802-3023

megan@sys-con.com

Associate Sales managers

Kerry Mealia, 201 802-3026

kerry@sys-con.com

PRODUCTION

Lead designer

Louis F. Cuffari, 201 802-3035

louis@sys-con.com

Art director

Alex Botero, 201 802-3031

alex@sys-con.com

Associate Art directors

Tami Beatty, 201 802-3038

tami@sys-con.com

Abraham Addo, 201 802-3037

abraham@sys-con.com

Assistant Art directors

Andrea Boden, 201 802-3034

andrea@sys-con.com

Video Production

Ryan Palmieri, 201 802-3036

ryan@sys-con.com

SYS-CON.COM

consultant, Information Systems

Robert Diamond, 201 802-3051

robert@sys-con.com

Web designers

Stephen Kilmurray, 201 802-3053

stephen@sys-con.com

Wayne Uffleman, 201 802-3057

wayne@sys-con.com

ACCOUNTING

Financial Analyst

Joan LaRose, 201 802-3081

joan@sys-con.com

Accounts Payable

Betty White, 201 802-3002

betty@sys-con.com

Accounts Receivable

Gail Naples, 201 802-3062

gailn@sys-con.com

CUSTOMER RELATIONS

circulation Service coordinators

Edna Earle Russell, 201 802-3081

edna@sys-con.com

jdj Store manager

Brundila Staropoli, 201 802-3000

bruni@sys-con.com

ing the Plus (+) and Minus (–) buttons
on top of the grid.

• Remove the active_usr and random-
key_usr fields from the grid. Select
each of them and click the Minus (–)
button.

Now do the following:
 The name_usr field is already con-
figured. It will be displayed as a text box
labeled “Name”.
 Select the email_usr field, and change
its label from Email to E-mail.
 From the Display As pop-up menu,
select the photo_usr field and change
it to a File Field control to allow users to
upload their avatar image.
• The password_usr field is already con-

figured to be displayed as a password
field, so you can move on to the next
step of the wizard by clicking Next.

• In Step 3, you will define the validation
rules for each form field. Because you
configured the login settings in the
InterAKT Control Panel, the validation
rules for the user name, e-mail, and
password fields are already in place. All
three fields are required. The validity
of the e-mail address is verified (which
means users can’t type bogus text that
is not an e-mail address). You do not
need to change any settings in this step.

 In Step 4, you can define extra fea-
tures for the registration:
 To send a welcome message to a new
user, check the Send Welcome E-mail
option.
 To enable account activation, check
the Use Account Activation option. The
wizard will handle all the necessary
details such as generating random keys,
creating the activation page, and sending
the activation e-mail message.
 Click Finish to complete the wizard
and apply the changes.
The wizard generates the registration
form with two password fields, creates
the activate.php page that handles
account activations, and adds the server
behaviors that verify whether the user
name is unique, the e-mail address is
valid, and the two passwords match.
 Save your page and upload all files
to your testing server. If you preview the
page in a browser.
 Notice that required fields are marked
with an asterisk (*) and the E-mail field

has a hint indicating the correct format.
Put your form to the test to see how it
works. Try to register an account using an
incorrect e-mail address. An error mes-
sage will be displayed next to the e-mail
field, but the data you entered is not lost.
 You can also test the form to see what
happens if you type two different pass-
words or if you try to register an account
using a user name that already exists in
the database.

Adding a File Upload
Feature
 Although you can choose a file in the
Photo field, the image is not uploaded
to the server. To build a functional file
upload, you will use the Upload and
Resize Image server behavior:
 Open the register.php page in
Dreamweaver, go to Server Behaviors tab,
and select Plus (+) > MX Kollection > File
Upload > Upload and Resize Image.
 In the Basic tab, define where to get
the images from and what to do with
them:
 From the Form Field pop-up menu,
select the form control for uploading
files. You can only select form1.photo_usr
because this is the only file field on your
page.
 From the Table Column pop-up menu,
select the column that will store the file-
name: photo_usr
 From the Upload Folder pop-up
menu, enter the path where the upload-
ed images will be saved. Click Browse and
select the profiles folder.
 In order to save space on your server,
resize the photos while keeping their
aspect ratios. Choose Proportional – Fit
to Box and make them 80 pixels wide by
80 pixels high. Before moving to the next
tab, verify that your interface.
 In the File tab, you can specify vari-
ous security settings: the maximum file
size allowed and the list of permitted file
extensions. Use the default values for
these options. You can also specify the
preferred overwriting conflict resolution.
Leave the default Automatic Renaming
method. (If a user uploads a file having
the same name as another photo on the
server, say angel.gif, it will be automati-
cally renamed to angel_1.gif.)
 You don’t need to configure anything
in the Advanced tab (this is where you
can register the file upload action to

2 • 2006 mxdj.com • �

more transactions and assign it a priority).
Click OK to apply the changes.
The image upload feature now works. Try
registering a new account and uploading
a photo. The photo is displayed when the
user posts a message.
After registration, you will also receive two
e-mail messages—one asking to activate
your account and a welcome message.
 You can edit the contents of the two
e-mail messages by editing the cor-
responding HTML files located in the
includes\mailtemplates\ folder.
 In the next section, you will create the
login form.

Building the Login Page
The layout of the login page is already
created. You only have to apply the Login
Form Wizard:
• Open the login.php page in

Dreamweaver.
• Select and remove the placeholder text

(“Login form here”).
• Go to the MX Kollection tab of the

Insert bar and click the Login Form
Wizard icon.

• This wizard consists of two steps. The
first one is purely informative, dis-
playing the settings you made in the
Control Panel. Click Next to continue.

 In Step 2 configure specific login
options:
 To enable users to remain logged
in, select the Create “Remember Me”
Checkbox option.
 To build a page that automatically
generates a new password for a user
and sends it by e-mail, select the Create
“Forgot Password” Page option.
 Click Finish to complete the wizard
and apply the changes.
The wizard automatically generates the
application logic to verify whether the
user and the password are correct and
whether the account is active. It also gen-
erates the forgot_password.php file and a
link to it in the login form.
 Save the page and upload it to the
server. Make sure you also upload the for-
got_password.php file. You can test the
login form in your browser to see how
it works. If you log in as an inactive user
(user name: Angel, password: root), you
will receive a warning message.
 In the next section, you will create a
logout link that safely destroys all session
variables.

creating the Logout Link
 Although an automatic logout takes
place when the session expires or the

browser window is closed, you must add
an explicit logout link which enables
users to clear the session information
safely. You must add this link to the fol-
lowing forum pages:
• reply_message.php
• view_message.php
• post_message.php
• index.php

 The following steps explain how to
create the link on the forum home page.
You will need to repeat the steps for the
other pages as well:
• Open index.php in the Code view.
• Place the cursor after the Login link in

the top-right <div> container (the one
with the white links inside).

• Apply the Logout User server behav-
ior from the Server Behaviors tab by
selecting Plus (+) > MX Kollection >
User Login.

 Configure the dialog box:
 Select the first option button; the
the logout operation will be triggered
by a link. From the pop-up menu, select
Create New Link: “Logout”.
 After users log out, they will be redi-
rected to the forum home page. Click the
Browse button and select the index.php
page.
 Click OK to apply the server behavior.
Notice that the Logout link is created.
 Repeat these steps for the reply_mes-
sage.php, view_message.php, and post_
message.php pages.
 Not all links must be visible all the
time. Logged-in users have no need to
see the Login and Register links, just as
the Logout link means nothing for the
user who hasn’t logged in or doesn’t have
an account. In the next section, you will
use conditional regions to control which
links are displayed and when.

Hiding content with
conditional Regions
 To control what links are displayed
when users are logged in and what to dis-
play when they are not, you will use a con-
ditional region added by ImpAKT: Show If
User Is Logged In. You can access it from
the Server Behaviors tab by selecting Plus
(+) > MX Kollection > Conditional Regions.
 Follow these steps to display the log-
out link for logged-in users and the oth-
ers for the rest:

10 • mxdj.com 2 • 2006

• Open the index.php page.
• Select the Logout link in the top-right

corner.
• Apply the Show If User Is Logged In

server behavior.

 For the restriction type, select the
Username and Password option.
 Check the Has ELSE option. Text in the
ELSE region will be displayed if the condi-
tion is not met (the user is not logged in).
• Click OK to apply the server behav-

ior. In Dreamweaver, a gray border
appears around the Logout link, along
with some placeholder text (Else text:
Replace this).

• Select the Register | Login text and cut
it from the page.

• Select the placeholder text (Else text:
Replace this) and remove it. Then paste
the Register and Login links from the
Clipboard.

• Save the page and preview it in a
browser. Because you are not logged

in, the register and login links will
appear.

 Try to log in using one of the sample
user accounts. Notice that only the
Logout link is visible. Repeat the previ-
ous steps for the view_message.php,
post_message.php, and reply_message.
php pages.

creating the Link for
Posting messages
 First, create the link to the page for
posting messages. Follow these steps:
• Open the view_message.php page in

Dreamweaver.
• Place the cursor before the Logout link

but inside the Show If User Is Logged
In conditional region border.

• Tip: If you cannot place the cursor
exactly, switch to Code view and place
the cursor before the <a> tag cor-
responding to the Logout link. Then
switch back to Design view.

• Enter the new link’s text, Post message,
and add a vertical bar separator after it.

• Select the text and click the Folder icon
in the Property inspector.

• In the dialog box that opens, select the
post_message.php file from the site
root.

• To define the URL parameters to pass,
click the Parameters button. In the
Parameters dialog box, configure a
new parameter as follows:

 In the Name field enter id_top.
 In the Value field, enter the following
code:

	<?php	echo	$_GET[‘id_top’];?>

 This code retrieves the value of the
URL parameter passed from the forum
home page (when users select a topic).
 Click OK twice to close the dialog
boxes and add the link.
 Because the link has been created
before the logout link—but inside the
conditional region—it is displayed only
when the user is logged in. Preview the
forum home page and log in with a valid
user name and password, and then click
a topic title. You’ll see the link to post a
message.

Protecting the Page from
Unauthorized Posts
 Next, protect the page against post-
ing messages without authorized access.
Although users cannot see the post mes-
sage link unless they are logged in, typ-
ing the page address in the Address bar
of the browser will load the page even if
users are not logged in. You must restrict
access to the page, using the Restrict
Access to Page server behavior from
ImpAKT:
• Open the post_message.php page.

• Apply the Restrict Access to Page
server behavior from the Server
Behaviors tab by selecting Plus (+) >
MX Kollection > User Login.

• Select the Username and Password
option to restrict access based on user
name and password only.

• Click OK to apply the server behavior.

 In the next section, you will create the
form that enables users to post messages.

creating the Form That
Enables Users to Post
messages
 To allow users to post a message, you
need to create an insert form that takes
user input and adds it to the message_
msg database table. To build the page,
follow these steps:
• Open the post_message.php page in

Dreamweaver.
• The layout is already created. In the

main <div> container, select the place-
holder text and remove it. This is where
you will place the actual form for post-
ing messages.

• Launch the Insert Record Form Wizard
from the MX Kollection tab of the
Insert bar.

• The wizard steps you through the
process of generating the form and the
insert transaction.

• In Step 1, select the database connec-
tion you’ve created in Part 1 of this
tutorial (connForum) and the table to
insert data into (message_msg). After
posting the message, users should
be redirected to the view_messages
page, and the ID of the topic should
be passed to it as a URL parameter.
Otherwise, the page will be blank.

• To add the URL parameter to the
page, without actually writing the
code yourself, use the InterAKT
Dynamic Data dialog box. Click the
Browse button and select the view_
messages.php page in the site root.
Type the following text after the page
name in the After Inserting Go To text
box:

• ?id_top=
• Click the blue lightning bolt icon next

to the text box. This opens the The
InterAKT Dynamic Data dialog box.

 Select the type of variable and enter
its name:

12 • mxdj.com 2 • 2006

 In the Get Values From pop-up menu,
select URL Parameter.
 In the Variable text box, enter the
name: id_top.
• Click OK to return to Step 1 of the

Insert Record Form Wizard.
• Click Next to proceed to Step 2, where

you have to configure your form fields
as follows:

 Remove the idmsg_msg and id_init_
msg fields from the grid. These fields are
not needed at this time. The idmsg_msg
column is needed only when replying
(which is currently not the case), and the
idinit_mg field will receive its value after
the transaction is completed.
 Set the idtop_msg field to be dis-
played as Text, and set Default Value to
be equal to the URL parameter named
id_top. To do that, select the field and
click the blue lightning bolt icon next to
the Default Value text box. In the dialog
box that opens, select URL Parameter
from the first pop-up menu and enter
id_top in the Variable field.
 Set the idusr_msg field to be dis-
played as text, with Default Value equal
to the session variable kt_login_id. Click
the blue lightning bolt icon to access the
InterAKT Dynamic Data dialog box, select
the session variable kt_login_id, and then
click OK.

• The date should also get its value auto-

matically, in order to store the date and
time when the message was posted.
Select date_message, set Display As to
Text Field, and set Default Value to the
following mark-up code: {NOW_DT}

• ImpAKT uses a simple markup lan-
guage that is replaced at runtime with
the corresponding values. This markup
language is easy to learn and is inde-
pendent of the server model you are
using. This means that {NOW_DT} will
always be replaced with the current
date and time, whether you work on
ASP, PHP, or ColdFusion.

• Keep the default settings of the sub-
ject_msg field.

• Set the content_msg field to be dis-
played as a text area.

• The subscribe_msg column is stored
as either 1 or 0 in your database.
Therefore, you should display it as a
check box; in the Submit As text box,
enter Checkbox: 1,0.

• Click Next to proceed to Step 3 of the
wizard, where you define any needed
validation rules. The user will only see
the subject and content fields. To stop
users from posting empty comments,
be sure to make the subject_msg and
content_msg columns mandatory.
Select each of them in the grid and
select the Required option.

• To apply these settings and complete
the wizard, click the Finish button.

• The web form is generated inside the
center <div> container, and the neces-
sary server behaviors are added to the
Server Behaviors tab. If you need to
edit any of these behaviors (the Insert
Record transaction or the Validation
options), simply double-click their
names in the Server Behaviors tab
and the corresponding dialog box will
open.

• Since the Idtop, Idusr, and Date fields
do not need to show up at runtime,
select their rows and remove them.
They should not be removed from
the Insert Record transaction; remove
them only from the HTML form. The
idea is to have their values set auto-
matically by the transaction—not to
make them visible to users.

• In the Property inspector, enter Post in
the Value text box to change the label
of the Submit button.

 In the next section, you will learn how
to associate messages to a thread.

Associating messages to a
Thread
 At this point you can add messages
in any topic you want by logging in and
clicking the Post message link. However,
records added through the insert form
are not complete—they are missing
the idmsg_msg and idinit_msg fields.
(Remember when you removed them
from the wizard in the previous section?)
 For new messages (which are not
replies to other messages), there is no
parent message, so the idmsg_msg
column should be NULL. The idinit_msg
field stores the ID of the first message
in a thread and will be used to notify
subscribers when a reply is posted. All
messages from the same thread have the
same value of the idinit_msg field.
 The first message in any thread must
have its idinit_msg field value equal to its

ID (its primary key). However, the primary
key of each message is only known when
the message is inserted in the database; it
cannot be known beforehand. In order to
set the value of the idinit_msg field after
the message has been posted, you must
execute some custom code that retrieves
the ID of the message.
 ImpAKT enables you to add custom
actions and behaviors to any transaction
using custom triggers, which are a simple
way to extend the default server behav-
iors that come with ImpAKT. However,
custom triggers may require good pro-
gramming skills and a good understand-
ing of how ImpAKT handles server-side
code. That is why we will assist you in cre-
ating your first block of code for ImpAKT:
 With the post_message.php page
open, select Server Behaviors tab > Plus
(+) > MX Kollection > Forms > Custom
Trigger. In the Custom Trigger dialog box,
you have two tabs to configure:
 Basic tab: Where you will write the
code
 Advanced tab: Where you will associ-
ate the custom action to the insert trans-
action and assign it a priority
• In the Basic tab, enter the following

code:
• $pkval = $tNG->getColumnValue(‘id_

msg’);
• $query_update_initmsgid = “UPDATE

message_msg SET id_init_msg =
“.$pkval.” WHERE id_msg = “.$pkval;

• $result_update = $tNG->connection-
>execute($query_update_initmsgid);

• The code performs an update on the
last inserted message and sets the
value of the idinit_msg field equal to
the message’s primary key.

 In the Advanced tab, you have to fill
in the following options:
 Trigger Name: Leave it to its default
value
 Trigger Type: This must be an AFTER
trigger because it will be executed after
the insert transaction; this way, the value
of the primary key will be available
 Trigger Priority: If you haven’t added
other triggers, you can leave it at its
default value (50)
 When you’re done configuring the
Custom Trigger, click the OK button
to close the dialog box and return to
Dreamweaver. You can edit the code at
any time by double-clicking the Custom

2 • 2006 mxdj.com • 13

Trigger server behavior in the Application
panel.
 Congratulations! You can now use the
behavior to post messages to the forum.
All the necessary columns will be filled in
correctly by the transaction.
 You can save and upload the page to
the server. To view it, however, you will
need to go to the login page and sign in.
Otherwise, you will see a warning mes-
sage similar to one.
 After you log in, browse to the topic of
interest and click the Post Message link.
 You have now enabled users to post
messages to the forum. In Part 4 of this
tutorial, you will learn how to build a
form for replying to messages and send
automatic e-mail notifications when a
reply is posted.

creating the Link to the
Reply Form
 The page used for replying to mes-
sages is called reply_message.php. Users
can access it from the view_message.php
page by clicking a Reply To Message link.
To create this link, follow these steps:
• Open the view_message.php page in

Dreamweaver.
• Look for the text “Reply to this mes-

sage” and select it.
• The link will be displayed after each

message. It must point to the reply_
message.php page. The link must also
pass the following parameters:

 Topic ID: id_top
 Message ID: id_msg
 Initial message ID: idinit_msg

• To create the link, right-click the select-
ed text and choose Make Link from the
menu.

• Select the reply_message.php page
and then click the Parameters button
to define the URL parameters men-
tioned above:

 Click the Plus (+) button to add a new
parameter.
 Enter id_top for the name of the first
parameter.
 To specify a value, click the lightning
bolt icon and then select the idtop_msg
field of the rsMessages recordset.
• Click OK to close the user interface and

add the URL parameter value.
• Repeat the steps above to add the

other two parameters. They must be
configured as follows:

 For the message ID, enter id_msg
for the parameter name and select the
id_msg field as its value.
 For the initial message ID, enter
id_init_msg for the parameter name and
select the id_init_msg field for its value.
• Click OK twice to close the dialog

boxes and create the link.
• Select the link and apply a Show If User

Is Logged In server behavior by select-
ing the Server Behaviors tab > Plus (+)
> MX Kollection > Conditional Regions.
Configure it to restrict the display
based on user name and password
only.

• Save the view_message.php page and
close it.

Next you will build the reply form.

Building the Reply Form
 To build the reply form, follow these
steps:
• Open the reply_message.php page

in Dreamweaver. The page layout is
already created.

• To allow only logged-in users to access
this page, apply a Restrict Access to
Page server behavior by selecting the
Server Behaviors tab > Plus (+) > MX
Kollection > User Login. Configure it as
you did on the page for posting mes-
sage in Part 3.

• Before building the form, you must
create a filtered recordset that retrieves
information about the message being
replied to. The recordset is filtered
by the message ID passed as a URL
parameter from the view_message.php
page. You will use this information to
display the original message title and
provide default values for the reply
form.

• To create the recordset, click the Plus
(+) button of the Bindings Tab and
select Recordset (Query).

 Enter rsOldMessage for the recordset
name.
 Set the database connection to con-
nForum and select the message_msg
table.
 In the Filter pop-up menu, select the
table’s primary key: id_msg. This must be
equal to the id_msg URL parameter.

• Click OK to create the recordset.
• Remove the placeholder text from the

main <div> container (the one with
the white background) and type the
following text:

• Reply to message:
• Next, drag the subject_msg field from

the rsOldMessage recordset in the
Bindings tab and drop it on the page,
right after the text.

• Create a new paragraph after the
dynamic text (press the Enter or Return
key) and launch the Insert Record
Form Wizard. You can access it from
the MX Kollection tab of the Insert bar.
Because you used the same wizard for
the message-posting page, most of the
interface fields should already be filled
in, thanks to the user interface per-
sistence (provided that this feature is

1� • mxdj.com 2 • 2006

enabled in the InterAKT Control Panel).
• The first step is already filled in: the

connection, table name, primary key,
and redirect page are preserved from
the last time you applied the wizard in
the post_message.php page.

• Click Next without changing anything.
In Step 2 of the wizard, each field still
has its default value and field type con-
figured as in the Post Message page.
The following fields are already set
up: idtop_msg, idusr_msg, date_msg,
subject_msg, content_msg, and sub-
scribe_msg.

• Because this is the reply page, you will
have to change some settings and add
the rest of the fields:

 Set a default value for the message
subject. It will display the original mes-
sage subject, preceded by Re:, to indicate
that the current message is a reply.
 Click the InterAKT Dynamic Data
icon (the blue lightning bolt next to the
Default value text field) to select the sub-
ject_msg column from the rsOldMessage
recordset.
 After the dynamic value has been
added to the Default Value text box,
simply enter Re: before the automatically
generated mark-up code.
 You need to add two more fields to
the insert transaction: idmsg_msg and
id_init_msg. To add them, click the Plus
(+) button on top of the grid and select
the fields from the list.
 For the idmsg_msg field, select Text
in the Display As pop-up menu and use
the id_msg field from the rsOldMessage
recordset as its default value (again, click
the blue lightning bolt icon to select the
default value).
 For the id_init_msg field, select Text in
the Display As pop-up menu and use the

id_init_msg field from the rsOldMessage
recordset as its default value (using the
blue lightning bolt).
• In Step 3 of the wizard, apply valida-

tion rules on the transaction fields.
Make all fields required, except the
Subscribe check box. Also, all foreign
keys (idtop_msg, idusr_msg, idmsg_
msg, and id_init_msg) must be positive
integers. Finally, the date field should
have the Datetime format.

• Click Finish to close the wizard and
apply the changes.

• After the form is added to the page,
remove the rows containing the Date,
Idtop, Idusr, Idmsg, and Id_init fields.
These will remain in the insert transac-
tion but should not be visible to the
user.

• Rename the Insert record button; it
should be labeled Reply.

 The page for replying to messages is
complete, and you can save it and upload
it to the server. You cannot access this
page directly unless you are logged in
(because of the Restrict Access to Page
server behavior).
 With this page, the basic forum appli-
cation is complete. Users can register
accounts and view, post, and reply to
messages.
 In the next section you will enhance
the forum application by keeping users
informed about replies to their messages.

Sending Reply Notifications
by E-mail
 In this section, you will enhance your
forum by allowing users to receive an e-
mail when a reply has been posted to one
of the threads they subscribed to.
 Subscribing to a thread is done when
the Subscribe check box in the post or

reply message page is checked. When a
user checks the Subscribe check box, the
value of the subscribe_msg column from
the message_msg table is set to 1. You
will modify the reply_message.php page
so that it sends an e-mail message to all
users who have subscribed to the thread.
Each user who checked the Subscribe
check box when posting a message or a
reply will receive an e-mail when another
reply is posted by a different user.
 The e-mail notification will be
implemented using the Send E-mail To
Recipients From Recordset server behav-
ior. Before applying this server behavior,
you must create the recordset that
retrieves the e-mail addresses of all users
subscribed to the thread:
• Open the reply_message.php page in

Dreamweaver.
• The recordset that contains the e-mail

addresses of all subscribed users will
have to retrieve its data from two
tables: message_msg and user_usr. To
create this recordset, you also need to
define these conditions.

 The subscribe_msg column must be
equal to 1 to prevent sending notifica-
tions to people who are not interested in
receiving them.
 The id_init_msg column must be
equal to the id_init_msg URL parameter
to make sure that only replies from the
current thread are taken into account.
 The id_usr column must be different
from the kt_login_id session variable that
stores the current user’s ID. Otherwise,
the user also receives a notification when
he or she replies to one of the messages
in the thread.
 Go to the Bindings tab, click the Plus
(+) button, and select the Recordset
(Query) option from the pop-up menu
that is displayed.
 Configure the simple Recordset dialog
box as follows:
 In the Name text box, enter rsSub-
scribers.
 In the Connection pop-up menu,
select connForum.
 In the Table pop-up menu, select mes-
sage_msg.
 Click the Advanced button to build
the query conditions.
• In the Advanced Recordset dialog box

you can enter your own SQL code and
define variables. First, you must enter

16 • mxdj.com 2 • 2006

the SQL code to perform the JOIN
between the message_msg and user_
usr tables. In the SQL text area, enter
the following code after message_msg:

	LEFT	JOIN	user_usr	ON	idusr_msg=id_

usr

 Define the variables needed to build
the conditions. Click the Plus (+) button
next to the Variables grid and configure
the Add parameter dialog box:
• In the Name text box enter initid.
• For the Default value enter -1.
• For the Runtime value enter $_GET[‘id_

init_msg’].
• In a similar manner, add another

parameter and configure it as follows:
• In the Name text box, enter userid.
• For the Default value, enter –1.
• In the Runtime value text box, enter

the session variable storing the user ID:
	

$_SESSION[‘kt_login_id’]

 Write the SQL code that defines the
conditions, using the variables you have
defined. In the SQL text area, after the
existing code, enter:
 WHERE id_init_msg=initid AND
id_usr!= userid AND subscribe_msg=1
 Click OK to create the recordset.
When you have the e-mail addresses of
the thread subscribers, you can apply the
Send E-mail To Recipients From Recordset
server behavior. This server behavior
sends an automatic e-mail message to
a list of e-mail addresses extracted from
your database. You can access it from the
Server Behaviors tab by selecting Plus
(+) > MX Kollection > Send E-mail. The
message will contain the entire reply con-
tents, as well as a link to the thread.
Configure the server behavior as follows:
• In the Recordset pop-up menu, select

the rsSubscribers recordset you cre-
ated earlier.

• In the E-mail to menu, select the
email_usr field. This is the field that
contains the e-mail addresses.

• In the From text box, enter an e-mail
address or leave it at its default value.
(This value can be changed by select-
ing E-mail Settings in the InterAKT
Control Panel.)

• In the Subject text box, type the fol-
lowing text: A new reply has been
posted to the Forum.

• The message body will contain both
plain text (static values) and informa-
tion from the database (dynamic val-
ues). With the InterAKT Dynamic Data,
you can use fields from the current
transaction, recordset fields, and other
variables. You will include the reply
subject and content in the e-mail mes-
sage.

• Place the cursor in the Content text
area. On the first line you will address
the recipient. Type Dear and then click
the InterAKT Dynamic Data icon.

• In the InterAKT Dynamic Data dialog
box, select Recordset Field in the Get
Value From pop-up menu. Choose
the rsSubscribers recordset and the
name_usr field.

• Click OK to insert the user’s name.
Notice the InterAKT mark-up code that
is added in the message body.

• To preserve formatting, you will send
the e-mail in HTML format. You must
use a basic set of tags to make sure
the message is viewed as intended. For
example, to create a new line. use the

 tag.

• After the mark-up code for the user
name, enter the following:

• ,
 A new reply has been posted to
a thread you subscribed to:

• Tip: To make the text more clear, you
can use the Enter (or Return) key to
start a new line. However, new lines
created like this will not be converted
to line breaks in the actual message.

• Add the message subject by using the
InterAKT Dynamic Data dialog box again.
This time you will retrieve the subject
from the current insert transaction.

• After the message subject, enter
another
 tag and then add the
reply contents, as shown in the previ-
ous step. Add another
 tag to
separate the reply from the rest of the
e-mail.

• Finally, insert a link that points to the
view_message.php page; this also
passes the current topic’s ID. After the
last mark-up code, enter the following:

• To read the entire thread, click <a
href=’view_message.php?id_top=

• Select the idtop_msg field from the
current transaction using the InterAKT
Dynamic Data dialog box, as you did
previously. This will add the corre-
sponding mark-up for the URL param-
eter value.

• Close the link tag. After the inserted
mark-up code, enter the following:

• ‘>here.
• The entire message body should look

like this:
• Dear {rsSubscribers.name_usr},
 A new reply has been posted to a
thread you subscribed to:
 {sub-
ject_msg}
 {content_msg}
 To read the entire thread, click
<a href=’view_message.php?id_
top={idtop_msg}’>here.

• After you finish configuring the server
behavior..

• On the Options tab, verify that the
HTML text option button is selected.
This ensures that the message will be
delivered in HTML format.

• Click OK to close the dialog box and
apply the server behavior.

Now when users select the Subscribe
option when posting a message or a
reply.

 Congratulations! You have finished
building your very own forum applica-
tion. Feel free to improve it in any way you
want using any of the Dreamweaver 8 and
ImpAKT server behaviors and features.
Where to Go from Here
In this article, you have learned how to do
the following:
• Set up a professional user authentica-

tion system for your web applications
• Build insert forms that submit informa-

tion to a database
• Validate user input
• Send automatic e-mail messages

 Upgrade to Dreamweaver 8 here and
get your hands on a free ImpAKT license
so you can start building dynamic web
applications in no time.

Marius Zaharia is the documentation man-

ager at InterAKT Online, a developer of

professional tools for dynamic web devel-

opment. When he’s not writing articles

and tutorials to guide web developers, he

enjoys learning new things and exploring

new technologies. His interests range from

web development to politics and avant-

garde electronic music.

Cristian Ivascu is a technical writer with

InterAKT Online. He is a strong supporter

of open-source software and a fan of

Japanese culture and rock music.

2 • 2006 mxdj.com • 1�

he problem has riddled develop-
ers since the birth of Macromedia
Flash: What happens when a site
visitor doesn’t have the version

of Macromedia Flash Player needed for
my content, or doesn’t have one at all?
Many answers have appeared over the
years. And so far, the work has not been
the result of developers trying to reinvent
the wheel. Instead, it’s been the result of
developers trying to invent a wheel that
actually works.
 Can Flash detection be truly effective?
Can it be seamless for site visitors and
simple for you to implement? Can it make
the player upgrade process friendlier?
 In this article, I’ll discuss the pros
and cons of several approaches to Flash
detection (and include a Flash Detection
Experience Matrix). I also describe the
new Flash 8 detection script, which, along
with Flash Player Express Install, just
might be the answer we’ve all been wait-
ing for.

A Brief History of Why We
Need Flash detection
 With new versions of Macromedia
Flash Player appearing on the web
roughly every 18 months for the last
several years, the task of ensuring your
site visitors’ player versions are compat-
ible with your content can be downright
frustrating. On the flip side, nothing is a
bigger turn-off than landing on a web
page that points a finger at you and says,
“Macromedia Flash Player is required to
view the content on this page,” leaving
you without a way to continue your expe-
rience without upgrading your player.
After all, it’s the developer’s job to make
sure you can do what you want to do on

his or her site. It’s the developer’s job to
determine which version of Macromedia
Flash Player is installed in your browser
and to react accordingly.
 User experience, as we all (should)
know (by now), is vital to the success of a
website or web application. Bad experi-
ences are the equivalent of walking into
a clothing store, asking a salesperson to
see that fancy shirt hanging on the wall,
and being told, flatly, “No.” And telling me
my system is somehow incompatible with
your allegedly amazing website is like fol-
lowing up this experience by telling me
to leave the store. Take a good look at the
Flash detection experience implemented
on your own website and try to see it
the way your grandmother might see it.
Does she have the plug-in she needs?
If not, what does she see, if anything at
all? What happens if she chooses not to
upgrade? If she does upgrade, will she be
able to quickly return to your page?
 If you use Flash on your website, your
only real option is to make sure you have
an answer for all of the preceding ques-
tions, and implement a detection method
that handles each situation.
 So far, that’s been much easier said
than done.

So many Solutions, So
Little Success
 Over the years, I’ve met hundreds of
Flash developers, and many of them have
their own way of handling Flash detec-
tion, but several approaches have risen
to the top of the stack to become at least
somewhat standard. These approaches
vary wildly in features, compatibility,
effectiveness, and user experience, but
one thing stands true regardless: none of

them works 100% of the time.
 To make an informed decision about
which approach is best for you and your
site visitors, you need to know the facts.
Lucky for you, I’ve done a lot of the leg-
work already and whipped up a fancy
Flash Detection Experience Matrix for
you, along with an overview of each of
the tested approaches, and an introduc-
tion to the newest Flash detection script.
Before you move on, however, it’s impor-
tant to understand what is needed to
design a good Flash detection experi-
ence, for the simple act of displaying
Flash content on your site presents sev-
eral very key issues:
• Does the user have Macromedia Flash

Player?
• If needed, does the user have

JavaScript enabled?
• Does the user have the required ver-

sion of Flash Player?

detecting the Existence of
macromedia Flash Player
 To create a good detection experi-
ence, you need first to be able to specify
what happens when Flash Player is not
installed on the user’s browser. If you
offer no alternate content, is the user
going to sit there staring at a blank
screen, hoping that his or her web-savvy
neighbor will come along and save
the day? Most likely, the answer is no.
Instead, your visitor will head off to your
competitor’s site, cursing your name the
whole time. See, not every person that
visits your site is going to want to per-
form a software installation just to view
your content, regardless of how simple it
is. So you need to offer your site visitor a
compelling reason to perform the instal-

Best Practices for Flash
Player Detection

Can Flash detection be truly effective?
by robert hoekman

detection

t

This article originally
appeared on

www.macromedia.com/
devnet. Reprinted with

 permission.

1� • mxdj.com 2 • 2006

lation. In other words, you need to tell
your users what they will see or gain by
installing the player, and make sure it’s
something that benefits them directly.
Detecting Whether JavaScript Is Enabled
If your Flash detection method is depen-
dent on the use of JavaScript, you also
need to plan what happens if the user
has disabled the use of JavaScript in his
or her browser. Ideally, you should be
able to display alternate content, either
asking the user (very nicely) to enable
JavaScript and refresh the page, or offer-
ing HTML content in lieu of the Flash
content.

detecting the Required
Flash Player Version
 Next, you must handle old versions of
Flash Player. If your content is designed
for Flash Player 8, for example, and your
site visitor has Flash Player 6 installed,
he or she should see alternate content.
Again, the alternate content can either
ask very nicely for the visitor to upgrade
or offer HTML content in place of Flash
content.
 Finally, you probably want the solu-
tion to be easy to implement, and so
effective that you don’t have to think
about it ever again.
 Now that you have a list of required
elements for a good Flash detection
experience, let’s take a quick look at some
common options currently in existence.

A History of Flash detection
methods
 Now, I’d like to give you a brief history
of some of the methods developers have
used to perform Flash detection to date.

Flash Satay
 Introduced in an article on A List
Apart, Flash Satay was intended as a
standards-compliant way to embed SWF
files into HTML pages. The side-effect,
however, is that it allows for the display
of alternate content in the event Flash
Player is not found, so it qualifies as a
method of Flash detection. The idea is
that, using valid XHTML, a browser with
no Flash Player installed runs across an
<object> tag trying to create a Flash
object, realizes it can’t do so, and simply
skips to the next node, which can be a
text node or an tag specifying
alternate content. In short, if the browser

can’t create the object it needs, it displays
the content in the next child node.
 One issue with this solution is that it
doesn’t account for older plug-in versions.
If the browser recognizes the object type,
which it will if any version of Flash Player
exists in the browser, it will create the
Flash object. If your content uses Flash
Player 7–specific features, and the user
has Flash Player 6, she may see nothing
but a white box on the HTML page.
 This method also has the disadvan-
tage of not streaming the SWF file when
using Microsoft Internet Explorer. For
large SWF files this can be reason enough
not to use this method. Flash Satay is
great for small movies, but once your
content exceeds 100K you should look
into alternative detection methods. They
might not validate as standards-compli-
ant XHTML, but they will provide a much
better user experience, and that is what
really counts in the end.

The Redirect method
 Implemented in the Flash MX 2004
HTML templates and used as part of
the old version of the Macromedia
Flash Detection Kit, the redirect method
involves running Flash detection on one
page and redirecting the user to one of
two other pages based on the result of
the test. If the plug-in is installed and is
the right version, the user lands on the
page with the Flash content. If not, he or
she lands on a page featuring alternate
content. By default, this approach uses
three HTML files and two SWF files (one is
used as part of the detection process, and
the other is for your content).
 Using the approach is not only messy
(requiring five files for one piece of
content), but it also puts the user into a
Back button loop. Clicking the Back but-
ton sends the user back to the detection
script, which promptly returns him to a
content page, rendering the Back button
useless.

The No-detection Approach
 This is really a non-approach. By
using no Flash detection whatsoever,
developers simply assume that every
person visiting a site either already has
the Flash plug-in installed, or the browser
will attempt to handle the installation for
the user. (Many modern browsers have
a built-in prompt for starting the instal-

lation process, but not all of them.) And
while this works fine in many cases, the
browser prompt is a little scary. If you
choose to install the plug-in, some brows-
ers show you a dialog box titled “Security
Warning.”
 Do you really want to put that in front
of your users?

The “other” Approaches
 Several common detection approach-
es were not even tested for the purposes
of this article, but there’s good reason
for excluding each. Server-side detec-
tion, for example, is dependent on the
server technology being used. Since
this can change from project to project,
it’s not the ideal solution. And although
Flash Player can handle version detec-
tion itself with a little bit of ActionScript,
an inherent flaw with this approach, as
you may realize, is that it can’t possibly
work if some version of Flash Player is not
already installed. Users with no plug-in
are left out in the cold.
 Finally, the Moock FPI (created by
renowned Flash developer Colin Moock)
and used often by developers, is no lon-
ger even recommended by Moock him-
self. It also failed on at least one major
Mac browser, so it didn’t make the cut. As
an alternative to detection, Moock recom-
mends offering two entry points to your
site, one for the HTML version and one for
the Flash version. Of course, you’d have
to do this for every major piece of Flash
content on your site (and have an HTML
version of it), and all along the way, you’d
be assuming users know the difference
between HTML and Flash. In many cases,
they don’t.
 So what’s a geek to do? If no solution
is perfect, what can you do to create a
good experience and ensure the visitor
doesn’t leave your site at the first sign of
trouble?

Using Flash � to create
Effective detection
Experiences
 Well, folks, today is a good day: the
search is over. The wheel has been invent-
ed. And tested. And taken on a nice, long
road trip.
 Say hello to the newest detection
script, which you can implement easily
using Macromedia Flash 8. Much like the
Six Million Dollar Man, it’s better, faster,

2 • 2006 mxdj.com • 1�

and stronger. And as an added bonus,
you can actually rely on it.
 Included as an HTML template option
in Flash 8, this new detection script
solution is implemented by setting your
Publish Settings to publish an HTML
page for your SWF file, and activating the
Detect Flash Version check box prior to
publishing. After you’ve published your
files, the resulting HTML file contains all
the code necessary to run effective detec-
tion, display alternate content to people
with older versions of Macromedia Flash
Player installed, and show different alter-
nate content to those with JavaScript
disabled.
 In Macromedia Flash MX 2004, the
solution was purely ActionScript-based
and did not meet the needs of devel-
opers who wanted more fine-grained
control over the user experience. The
required browser redirect caused user
confusion and in the end did not meet all
the needs of the developer community.
What is provided in Flash 8 is a huge
improvement in that it takes the best
ideas from scripts that have been in use
for years and provides a solution that
gets developers up and running quickly.
Want to hear the best part? I personally
tested the new script in several different
browsers (the newest versions of Internet
Explorer, Firefox, Netscape, Opera, and
Safari) on Windows and Macintosh oper-
ating systems. Each method was tested
with no plug-in installed, with an old
version installed, and with JavaScript dis-
abled. The new Flash 8 script is the only
detection approach that performs cor-
rectly in every single case. Check out the
Flash Detection Experience Matrix below:
 Launch printable document (PDF,
16K)
 You have to do a little bit of work to
implement the Flash 8 detection script,
as the detection template is not meant as
the final version of a web page. However,
it’s not complicated, and doing so will
help ensure you can keep all of your site

visitors happy. To make the code in the
default HTML template useful in a real
page, you need to do some copying and
pasting, possibly modify the version
number to detect, then go through the
code and set what you’d like to display
as alternate content when an old version
of Macromedia Flash Player (or no player
at all) is found, or JavaScript is disabled.
The detection script has generic, default
alternate content specified already, but
you should really customize this to your
(users’) needs.
 Here’s a quick synopsis of the imple-
mentation process (demonstrated in the
Captivate demo):
 Play the demo: Implementing the
Flash 8 Detection Script
• After you’ve exported HTML with

Flash detection from Flash 8, move
the JavaScript code found within the
template’s <head> tag to the same
location in your page.

• In the Globals section of the JavaScript
code, set the version number of the
Flash version you’d like to detect.

• Next, move the second JavaScript
instance from the template (the one
found within the <body> tag, which
triggers the first script) into the spot on
your page where you’d like your Flash
content to display.

• Replace the value of the alternateCon-
tent variable in the second JavaScript
snippet with HTML for your own, cus-
tom content.

• Replace the HTML code found within
the NOSCRIPT tag with appropriate
alternate content.

 As alternate content, consider what’s
actually needed for the user to continue
his or her experience seamlessly. If the
Flash content is nothing more than an
ad banner, specify a GIF or JPEG image
as alternate content and leave it at that.
If the Flash content is required, consider
using a teaser image (such as a screen
shot of what the user would be seeing
if the correct player was installed) in
conjunction with asking the user nicely
to upgrade and offering a link to the
installer page. This way, you offer a com-
pelling reason for the user to perform the
installation.
 If the user has JavaScript disabled
(this is true in 10% of web browsers, on
average), he or she will see the content

specified by the NOSCRIPT tag in your
page. This could be a teaser image or
plain text as well.
 Most important is that what you show
is helpful to the user experience. If the
Flash content is not required, don’t force
(or even request) the upgrade. If it is
required, offer a good reason to upgrade.
If JavaScript is disabled, offer a good rea-
son to enable it and refresh the page, or
show appropriate alternate content (such
as a GIF or JPEG image).

designing the Perfect Flash
detection Experience
 Using the detection script dis-
cussed earlier, you will now be able to
make sure that users have the correct
player to view your content. If users
do not have a version of Flash Player
adequate to view your content, or they
have browser scripting disabled, you
will now have much greater control
over the experience of upgrading
users to the latest player. In the past
the installation of the player differed
between browsers and platforms, but
now Macromedia has made a seam-
less process for developers to upgrade
users. This new method is called Flash
Player Express Install. Express Install is
available for users who already have
Flash Player 6.0r65 and above. This new
installation process prompts users to
upgrade to Flash Player 8 if they do not
have it already and, when installation is
complete, returns the user back to the
page that started the process. If you
really want your users to see the latest
Flash 8 features in your Flash content,
this is a great new way to upgrade
them without a lot of pain.
 Macromedia has enabled the new
Flash Player Express Install mechanism
with the release of Flash Player 8. This
mechanism means that by sticking
another small bit of HTML into your page,
you can use the player itself to prompt
the user to upgrade, and automatically
return the user to your page upon suc-
cessful completion of the installation. If
the user chooses not to upgrade through
the inline prompt, an event is fired that
you can use to display alternate content.
If you want to implement Flash Player
Express Install, the full details and sample
files are contained in the Flash Player
Detection Kit.

20 • mxdj.com 2 • 2006

 So how can you implement the per-
fect Flash detection experience? Here’s
a quick synopsis, which combines the
Flash 8 detection script and Flash Player
Express Install.
• In your HTML page, detect the player

version required for your page by
implementing Flash 8 detection script,
as described previously.

• Implement Flash Player Express Install,
using the Flash Player Detection Kit
and the tutorial in the next section.

• If version 6.0r65 or higher is found,
but the player version is still not high
enough for your content, the Flash
Player Express Install will prompt the
user to upgrade. If the user upgrades,
the plug-in installs, the browser
restarts, and the user is returned to
your page automatically.

• If the user chooses not to upgrade,
capture the event (with a bit of
ActionScript, detailed in the next
section), and either display alternate
Flash content, redirect the user to
another page (through a getURL() call),
or perform an inline replacement of
your Flash content through JavaScript.
Either way, the user’s experience con-
tinues seamlessly, and you earn your-
self another happy customer.

 For instructions on how to see each
of the approaches described above in
action, refer to the READ_ME.txt file
included with the sample files you down-
loaded at the beginning of this article.
Several versions of the same HTML page
are included in the download, each of
which uses a different Flash detection
approach. To see the Flash 8 script solu-
tion in action on a real website, visit
www.rhjr.net/eReader (used for the sam-
ple page in the Captivate demo), which
also includes examples of the new Flash
Player 8 text rendering and drop shadow

filters included with the Flash 8 authoring
tool.
 Finally, tell every web developer you
know about this article. The sooner Flash
Player Express Install becomes standard,
the sooner we can stop frustrating users
and start handling Flash experiences in
an effective manner and improving user
experiences on the web.

Implementing Flash Player
Express Install
 The following tutorial describes how
to implement the Flash Player Express
Install mechanism.

Note: Because users who have not

installed the Flash 8 plug-in cannot see

Flash 8 content, another SWF is used

in place of your actual Flash content to

handle the upgrade process. This SWF

is named playerProductInstall.swf and is

published for Flash plug-in version 6r65.

Following these steps, you’ll see how to

modify the source file for this SWF and

provide alternate content if the upgrade

fails or is cancelled.

 This tutorial assumes that you have
already added the Flash 8 detection
scripts to a web page (as explained in
the Captivate movie earlier in this article
titled Implementing the Flash 8 Detection
Script) and have already downloaded the
Flash Detection Kit:
• Extract the Flash Detection Kit files

from the ZIP file you downloaded and
locate the “Express Installation” direc-
tory.

• Copy the following files from “Express
Installation” into a new folder on your
hard drive: playerProductInstall.fla,
playerProductInstall.html, playerPro-
ductInstall.as, and playerProductInstall-
Callback.as.

• Open playerProductInstall.fla in the
Flash authoring tool. This file creates
the SWF that users see if they do not
have Flash Player 8 but do have Flash
Player 6r65 or higher. Change the
dimensions and background color to
something that works with your web
page. Generally, it’s best to use the
same dimensions as your own Flash
content so that page rendering isn’t
affected as a result of displaying play-
erProductInstall.swf.

• Note: The dimensions of playerProduc-

tInstall.swf must be at least 215 x 138
pixels, which is the minimum space
required to display the Express Install
prompt properly. Use the AutoUpdater
symbol instance on the Stage as a
guide.

• In playerProductInstall.fla, delete
the instructions text from the Stage.
If you like, change the color of the
AutoUpdater symbol—for example, to
blend in with the background color.

• Open playerProductInstallCallback.as.
This file determines what the users see
if the upgrade fails or is cancelled. The
code in this ActionScript file looks like
this:

function	installStatus(statusValue)	{

						if	(statusValue	==	“Download.

Complete”)	{

											//	Installation	is	com-

plete.	In	most	cases	the	browser	win-

dow	that	this	SWF	

										//	is	hosted	in	will	be	

closed	by	the	installer	or	manually	by	

the	end	user.

						}					else	if	(statusValue	==	

“Download.Cancelled”)	{

														//	The	end	user	chose	

“NO”	when	prompted	to	install	the	new	

player

														//	by	default	no	User	

Interface	is	presented	in	this	case.	

It	is	left	up	to

														//	the	developer	to	

provide	an	alternate	experience	in	

this	case.

						}					else	if	(statusValue	==	

“Download.Failed”)	{

														//	The	end	user	failed	

to	download	the	installer	due	to	a	

network	failure

														//	by	default	no	User	

Interface	is	presented	in	this	case.	

It	is	left	up	to

															//	the	developer	to	

provide	an	alternate	experience	in	

this	case.

						}

		}

• Replace the comments within each
part of the if/else statement with your
ActionScript that determines what
happens in each event. For example, if
statusvalue (the variable that is tested
in each part of the statement) is equal
to Download.Cancelled, you might use

“So how can
you implement

the perfect
Flash detection

experience?”
22 • mxdj.com 2 • 2006

a getURL() call to send the user to a dif-
ferent page on your site.

• Take a look at my eReader applica-
tion (www.rhjr.net/eReader) to see
some examples of how this is used (of
course, you’ll have to uninstall your
copy of Flash Player and install an
older version first, then be sure to can-
cel the upgrade when the Flash plug-in
prompt displays).

• Save your work when you’re done.
• Republish playerProductInstall.fla to

create your newer version of playerPro-
ductInstall.swf. Save playerProductIn-
stall.fla, close both files, and then move
playerProductInstall.swf into the same
directory as your web page.

• Open playerProductInstall.html in
a text editor (such as Macromedia
Dreamweaver 8) and locate the
JavaScript within the BODY element of
the page.

• This script is similar to the one you
added to your own web page earlier,
but it also checks to see whether the
user’s machine has Flash Player version
6r65 or higher installed. If so, it displays
playerProductInstall.swf in place of
your Flash content.

• Copy the entire script (excluding the
NOSCRIPT element, which does not
need to change). In a moment, you’ll
paste this script into your own page.

• Open your own web page in a text
editor (for the sake of the tutorial, we’ll
call it index.html). Highlight the script
in the BODY element of index.html and
paste the script you copied from play-
erProductInstall.html in its place.

• In the first part of the if statement in
index.html, locate the productInstallO-
ETags variable and replace the default
height and width values with the
height and width of your own, newer
version of playerProductInstall.swf. The
values you need to change are high-
lighted in the following code snippet:

if	(hasProductInstall	&&	!hasReqest-

edVersion)	{

							var	productInstallOETags	=	

‘<object	classid=”clsid:D27CDB6E-AE6D-

11cf-96B8-444553540000”’

						+	‘width=”550”	height=”200”’

						+	‘codebase=”http://download.

macromedia.com/pub/shockwave/cabs/

flash/swflash.cab”>’

						+	‘<param	name=”movie”	value=”pl

ayerProductInstall.swf?MMredirectURL=’

+MMredirectURL+’&MMplayerType=ActiveX&

MMdoctitle=’+MMdoctitle+’”	/>’

						+	‘<param	name=”quality”	

value=”high”	/><param	name=”bgcolor”	

value=”#3A6EA5”	/>’

						+	‘<embed	src=”playerProductIns

tall.swf?MMredirectURL=’+MMredirectURL

+’&MMplayerType=PlugIn”	quality=”high”	

bgcolor=”#3A6EA5”	‘

						+	‘width=”550”	height=”300”	

name=”detectiontest”	aligh=”middle”’

						+	‘play=”true”’

						+	‘loop=”false”’

						+	‘quality=”high”’

						+	‘allowScriptAccess=”sameDomain

”’

						+	‘type=”application/x-shock-

wave-flash”’

						+	‘pluginspage=”http://www.mac-

romedia.com/go/getflashplayer”>’

						+	‘<\/embed>’

						+	‘<\/object>’;

						document.write(productInstallOET

ags);	

Locate	the	first	else/if	part	of	the	

statement	and	replace	the	values	high-

lighted	below:

	}	else	if	(hasReqestedVersion)	{		//	

if	we’ve	detected	an	acceptable	ver-

sion

					var	oeTags	=	‘<object	

classid=”clsid:D27CDB6E-AE6D-11cf-

96B8-444553540000”’

					+	‘width=”550”	height=”200”’

					+	‘codebase=”http://download.mac-

romedia.com/pub/shockwave/cabs/flash/

swflash.cab”>’

					+	‘<param	name=”movie”	

value=”example.swf”	/><param	

name=”quality”	value=”high”	/><param	

name=”bgcolor”	value=”#FFFFFF”	/>’

					+	‘<embed	src=”example.swf”	

quality=”high”	bgcolor=”#FFFFFF”	‘

					+	‘width=”550”	height=”200”	

name=”detectiontest”	aligh=”middle”’

					+	‘play=”true”’

					+	‘loop=”false”’

					+	‘quality=”high”’

					+	‘allowScriptAccess=”sameDomain”

’

					+	‘type=”application/x-shockwave-

flash”’

					+	‘pluginspage=”http://www.macro-

media.com/go/getflashplayer”>’

					+	‘<\/embed>’

					+	‘<\/object>’;

				document.write(oeTags);

• This script runs if the correct Flash
plug-in version is found, so replace the
highlighted values with the dimen-
sions and name of the Flash movie
you’d like to display.

• Open index.html in a web browser and
test it out. You’ll need to uninstall Flash
Player and install an older version to
test it accurately.

 If you followed the preceding steps,
index.html should now show you the
Express Install upgrade prompt when you
come to the page using an older version
of Flash Player.

Where to Go from Here
 To learn how to leverage Flash
Player Express Install, refer to the
Flash Detection Kit (FDK). The FDK
also describes the other detection
strategies mentioned in this article in
more detail, including server-side and
script-less approaches. You can see
first-hand how the Flash 8 detection
script works by creating a new Flash
document in Flash 8, opening the
Publish Settings, selecting the HTML
tab, and selecting the Detect Flash
Version check box. Click the Publish
button and open the resulting HTML
file in your favorite editor (such as
Dreamweaver 8).
 For a detailed description of the
scripts used in the Flash 8 authoring
tool, see Future-Proofing Flash Player
Detection Scripts by Flash software
engineer Michael Williams, the guru at
Macromedia behind the Flash 8 detec-
tion script. Special thanks go to Michael
for his incredible diligence in solving the
continuing problem of effective Flash
detection. He was a man on a mission,
and users everywhere will benefit from
his expertise.

Robert Hoekman, Jr., is a Macromedia

Certified Professional and a user-

experience advocate. He founded the

Flash and Multimedia Users Group of

Arizona (FMUG.az), currently works

as a Flash developer for Interactive

Alchemy, and is the author of Flash

Out of the Box (O’Reilly, 2004) and

the “10 Minutes with Flash” series

of articles featured in InformIT.com’s

Flash Reference Guide. Learn more

about Robert at www.rhjr.net.

2 • 2006 mxdj.com • 23

lash Media Server 2 offers a unique
combination of traditional stream-
ing media capabilities and a flexible
development environment for

creating and delivering media experiences
to your audiences. These include traditional
media like video on demand, live web-
event broadcasts, and MP3 streaming, as
well as rich media communication applica-
tions like video blogging, video messaging,
and multimedia chat environments.
 One new feature of Flash Media
Server 2 is the File Object feature, which
enables real-time read/write file access
to a defined sandbox on your server,
enabling content management systems
and database applications without using
Flash Remoting. This is a simple example
that you can expand for use with File
Object applications.
 In this article, you will learn about a
rather simple application that lets you
display FLVs and MP3s on demand with
predefined components you build using
Flash Professional 8. This application
automatically grabs FLVs and MP3s from
a specific location on your server but is
extensible for other uses. For example,
to customize this application for a photo
album using JPEGs, you would just rede-
fine the filter so it calls JPEGs.
 This application demonstrates
new File Object properties on the
server side and works in conjunction
with the DataGrid, FLVPlayback, and
MediaPlayback components on the client
side. It demonstrates an alternative to
XML-driven playback lists. If you wish to
learn more about XML FLV lists, check out
Lisa Larson’s article, Creating a Dynamic
Playlist for Streaming Video.

Setting Up Your
Environment
 To follow this code walkthrough,
you will need on_demand_player.zip,
the sample file download that accom-
panies this article. Here’s what you
should do with the contents of the ZIP
archive:
• Place the FileObj and MyCollection

folders in your Flash Media Server
applications directory (by default, this
is Flash Media Server 2\applications\).

• Put the OnDemandPlayer folder any-
where on your development machine.

• Place the MP3s and FLVs that you
want to stream into the MyCollection/
streams/_definst_/ folder.

 It’s easy to change your default appli-
cations folder. Open conf/fms.ini in a text
editor and change the variable VHOST.
APPSDIR.
 Flash Media Server 2 has two applica-
tions that control the logic, FileObj and
MyCollection. When OnDemandPlayer.swf
is instantiated, it accesses FileObj, which
returns the content into a DataGrid. When
the user clicks an object in the DataGrid,
it calls the video based in MyCollection.

Setting Up Flash media
Server
 To make this application to work, you
need to configure File Access and Stream
Access.

File Access
 The File Object class allows access to
a sandbox within your server file system.
To protect against any misuse, Flash
Media Server allows access to files within

a sandbox specified for the virtual host
where the application instance is running.
To define your server-side sandbox,
go into your application.xml file in the
FileObj folder. Define where you are stor-
ing the FLVs and MP3s that you wish the
server to find:

<FileObject>

				<VirtualDirectory>/approot;	C:\

Program	Files\Macromedia\Flash	Media	

Server	2\applications\MyCollection\

streams_definst_\	

				</VirtualDirectory>

</FileObject>

 You have just enabled secure file
access to this defined sandbox. You can
set up multiple file object directories by
consecutively adding virtual directories.

Stream Access
 You will also need to set up your
Vhost.xml, which you can find in your
conf/_defaultRoot_/_defaultVhost_/
subfolder in the Flash Media Server 2
folder because you must tell the server
when you call “/approot” from the Vhost
instance that it should look in the speci-
fied directory. You will need to define
where you streams are located (should
be the same as the setting you defined
earlier for FileObject):

<VirtualDirectory>

			<Streams>/approot;	C:\Program	

Files\Macromedia\Flash	Media	Server	

2\applications\MyCollection\streams_

definst_\	

			</Streams>

</Virtual	Directory>

Using File Object for Video on
Demand and MP3 Playback

One new feature of Flash Media Server 2
 is the File Object feature

by robert sandie

mp3

f

This article originally
appeared on

www.macromedia.com/
devnet. Reprinted with

 permission.

2� • mxdj.com 2 • 2006

Examining the Server-Side
ActionScript
 There are two applications running on
the Flash Media Server:
• FileObj supports file access and filter

functions pointing to your stream
sandbox.

• MyCollection supports FLVPlayback
component functions.

 Both run using the same default
server-side ActionScript file, main.asc.
 When you develop any Flash Media
Server application, it is always easiest to
start with the server-side ActionScript.
Doing this allows you to debug and
simulate the client-side actions using
trace statements. This not only cuts down
on your development time but prevents
headaches later on.
 You may notice that there are extra
functions in main.asc in your FileObj
folder. Notice there is more server-side
ActionScript than is required for this
application. This is what I use to handle
all the file access commands in a familiar
framework or API. I hope you will find this
code useful and repurpose it for future
file access functions.
 Let’s go over a few key functions in
this file.

Constructor	for	File	Class

this.myFile	=	new	File(name);

 This construct command creates an
instance of the file class as object myFile.
The variable, name, can be either a file or
directory. In this demonstration, you will
be passing your alias directory into here
to gather information about it (by default,
approot).

File.List	for	File	Class

var	dirList	=	this.myFile.

list(filter);

 This is the list function from which the
DataGrid on the client side takes informa-
tion. The list method returns an array with
an element for each file in the directory.
You can filter this further with the filter
function:

function	filter(name)

				{

								if	(name.lastIndexOf(

“.flv”)	!=	-1	||	name.lastIndexOf(“.

mp3”)	!=	-1){

												return	true;

								}

												return	false;

				}

 For instance, if you wanted to build
from this and display only JPEG images,
you could use this filter and list command
to control what is being transferred to
your client.
 Here is a brief summary of other func-
tions in this main.asc file in case you want
to repurpose them for other applications
using File Object. To find more specifics
on the details of these function, read the
Flash Media Server LiveDocs, which are
a great resource for more information on
each of these functions.
 Here is a brief summary of the other
File Object functions:
• newClient.mkdir creates a directory

defined by dirName
• newClient.remove removes the given

file object
• newClient.rename renames the given

function
• newClient.copy copies the object to a

given variable
• newClient.closeFile closes access to the

file object

FLV_Playback Server-Side
ActionScript
 One of the most common errors
that occurs when streaming with
the FLVPlayback component in Flash
Professional 8 is when you forget to add
the main.asc file into the streaming Flash
Media Server video directory. I have

included it as a part of this package so
you will not encounter this problem your-
self.

Examining the client-Side
Setup
 This client-side setup is rather simple
because it is built with pre-existing
components using basic OOP principles.
The client-side framework consists
of the following files located in the
OnDemandPlayer folder:
• OnDemandPlayer.fla
• OnDemandPlayer.as

FLA components
 The FLA consists of three basic con-
trols:
• FLVPlayback: Used for streaming FLVs

(new in Flash Professional 8)
• MediaPlayback: The MP3 controller
• DataGrid: Used for connecting FLVs

and MP3s with the underlying archi-
tecture

• OnDemandPlayer: A movie clip
brought in pointing to ActionScript on
the first frame (check the Library)

 Connecting these client-side compo-
nents is rather simple. Let’s go over a few
key points.

ActionScript 2.0 and
movieclip classes
 A common best practice using OOP
principles for scalable applications involves
attaching movie clips as classes. This is
an excellent method for organizing and
attaching ActionScript classes to the Stage.
Peldi, one of the architects behind Breeze,

2 • 2006 mxdj.com • 25

describes this as a best practice. So if you
are wondering how OnDemandPlayer.as
is attached to OnDemandPlayer.fla, check
out the Library.
 This is comparable to using an
#include file but is more manageable by
simply attaching a movie clip from the
Library:

attachMovie(“OnDemandPlayer”,”mc”,0);

Connecting	with	the	Server

 The file access handshake with the
server is set up through a basic makeCon-
nection function:

public	function	makeConnection():

Void	{

				nc	=	new	NetConnection();

				nc.connect(“rtmp://”+serverName+”/

”+appName);

				nc.owner	=	this;

				nc.onStatus	=	function(info)	{

							if	(info.code	==	

“NetConnection.Connect.Success”)	{

												owner.dir();

								}

				};

}

Publishing Your Folder
directory
 This connects to and sends Flash
Media Server the folder name from which
you wish to obtain your FLVs and MP3s:

nc.call(“createFileObj”,	null,	folder-

name);

Getting the Stream Length
 This connects with Flash Media Server to
obtain the length for the FLV and MP3 lengths:

var	streamlength	=	owner.nc.call(“getS

treamLength”,	null,	stream_name);

 The FLVPlayback component has
stream lengths built in. To set the MP3
length in MediaPlayback and display the
length in the DataGrid, it must grab the
information from the FileObj main.asc file.

obtaining the List of File
objects
 On the client side, you must gather
the stream names as well as other infor-
mation regarding File Object in an array.
This is done with the dirResult function:

private	function	dirResult(folderName,	

owner):Void	{

		this.onResult	=	function(retVal)	{

					for	(var	i	=	0;	i<retVal.length;	

i++)	{

			var	flv_name	=	(retVal[i].name).

substr((retVal[i].name).lastIn-

dexOf(“/”)+1);

			var	index	=	flv_name.lastIn-

dexOf(“.”);

			var	stream_name	=	flv_name.

substring(index	+	1,	flv_name.length)	

+	“:”	+	owner.folderName	+	“/”	+	flv_

name.substring(0,	index);

			var	streamlength	=	owner.nc.call(“g

etStreamLength”,	null,	stream_name);

			owner.myDP_array.addItem({Name:flv_

name,	Length:retVal[i].streamlength,	

CreationTime:retVal[i].creationTime,	

LastModified:retVal[i].lastModified,	

Size:retVal[i].length});

			}

};

 Notice that the object retVal contains
more than simply the stream name. It

contains also creationTime, lastModified,
and length (size of file).
 These are just a few of the details
you can gather using the List command
on the server side. For a more complete
list of File Objects check out Property
Summary for File Class in the Flash Media
Server LiveDocs.

Where to Go from Here
 Using the file access and File Object
features in Flash Media Server is an
easy way to display content as an
alternative to XML-driven data lists.
The example shown in this article is
a simple use case for just showing
whatever media assets you have on
your server. For other applications, you
may want to consider combining the
extensibility and organization of XML
and ease of use with File Access as the
perfect method for Flash Media Server
on-demand applications. With this
application you can easily drop your
entire Flash video and MP3 media col-
lection onto your server to stream your
collection.
 As learn about and come up with
questions regarding Flash Media
Server development, check out the
Chattyfig list. This is the premier list
for Flash Media Server developers and
always contains informative develop-
ment discussions. As a developer, I
rely on this valuable resource when-
ever I face a tough problem. Just
be careful what you ask, however,
because if the answer is a simple
Google’s search away, they will hound
you for it.
 I hope this has helped you under-
stand the new file access feature built
into Flash Media Server. I wish you the
best of luck with your future Flash Media
Server adventures.

Robert Sandie interned at Macromedia

as a product manager for the Flash

Media Server team. He recently earned

his degree in Computer Science and

Business from Lehigh University in

Bethlehem, Pennsylvania, where he also

played football for the Mountain Hawks.

Robert has a wealth of experiencing lead-

ing Flash projects and developing Flash

video applications. To view his latest

endeavors, catch up with him at robert-

sandie.com.

26 • mxdj.com 2 • 2006

hose of you who follow the
Fireworks forum postings will
probably recognize my name. I
suppose I may have gotten a repu-

tation as a crusader who opposes the use
of the original Fireworks Pop-Up Menu as
implemented in Macromedia Fireworks
MX 2004 and earlier. I’m here to tell you
that you are absolutely right. There are
more than a few reasons not to use those
pop-up menus, in my opinion, and I have
spent a fair amount of time posting to
this effect.
 So why am I writing this article, then?
Well, I have an agenda, as follows:
• I want to tell the Fireworks team that

I appreciate the effort that they have
devoted to making this new menu sys-
tem.

• I want to tell you that I will no longer
bore you with my usual posts about
not using this menu system.

• I am very hopeful that the
Dreamweaver development team will
take these comments to heart and
focus on the pop-up menu feature in
future releases of that program.

 To cut to the chase, I am happy to tell
you that this feature is greatly improved
in Fireworks 8.
 In this article I briefly describe the
creation of a menu in various modes. I
examine and discuss the markup cre-
ated by Fireworks ready for import into
Dreamweaver, and describe what I think
might be useful improvements to con-
sider in the resulting markup.

Building a Pop-Up menu
 Those of you who have used the
pop-up menu feature in earlier versions

of Fireworks will be right at home in the
current one. The setup and dialog panel
are identical in Fireworks MX 2004 and
Fireworks 8, offering exactly the same
options and choices. Using this feature in
Fireworks 8, you can build visually pleas-
ing menu sets. It’s easy to see its appeal.
 To examine the pop-up menus that
Fireworks 8 creates, you will need to cre-
ate several extremely simple files. For the
first one, open Fireworks and select File
> New to create a new page—say, 640 x
400 pixels. Select the text tool and enter
Link1 anywhere on the page.
 Exit the text tool and then draw a slice
around Link1 (I made mine 41 pixels wide
and 23 pixels tall). Select it, name it link-
1button, use the selected slice’s bull’s-eye
to drop the context menu, and select Add
Pop-up Menu from the menu choices. A
panel will open, and you will make this
slice show a simple, single-option sub-
menu. In this panel enter Sub1-1 under
the Text column head. There is no need to
enter a link or a target.
 Now click the Next button to advance
to the Appearance tab (or just click the
tab), where you can select that this is a
vertical menu. With no further adjust-
ment, the submenu will be drawn on top
of the top menu choice, so you should
advance to the Position tab and click the
second position icon from the left. Leave
the rest of the settings in this and the
other tabs at their default values, and
conclude this menu by clicking Done.
Save this file as singlebutton.png.
 Preview the menu by selecting File
> Preview in Browser and then choosing
your browser of choice. You should see a
single-button menu which, upon rollover,
drops a single-option submenu.

With singlebutton.png still open, you can
now add more buttons to the menu. For
the purposes of this tutorial, you will add
three more menu buttons and give each
of them a single pop-up submenu. To do
this, deselect the visible slices option in
the Web Layer tools, double-click Link1,
and append Link2 Link3 Link4 to it (I have
put two spaces between each link name).
 Now exit text mode, enable the visible
slices option, and select the slice tool to
add a slice of similar dimension to link-
1button to each of the three new menu
options. Beginning with Link2, name each
new slice using a nomenclature similar
to that used previously: link2button, link-
3button, and link4button. One by one,
select each new slice and use the bull’s-
eye to add a pop-up menu with a single
submenu: Sub2-1, Sub3-1, and Sub4-1.
Save this new menu arrangement as four-
button.png.
 A preview in browser should once
again reveal what good work you do.

Importing the Pop-Up menu
into dreamweaver
 Now that you have two menus cre-
ated—one with a single button and
a single pop-up menu, and one with
four buttons, each with a single pop-
up menu—it’s time to get these into
Dreamweaver and examine the markup.
 Open singlebutton.png and select File
> Export. Choose a landing site for the
files from this (I created a folder called
single and placed these files into that
folder). Looking closely at the Export
panel, make sure that the Export field
is set to HTML and Images, the HTML
field is set to Export HTML File, and the
Slices field is set to Export Slices, with the

The Low-Down on Pop-Up
Menus in Fireworks 8

A brief description of the creation
of a menu in various modes

by murray r. summers

pop-ups

t

This article originally
appeared on

www.macromedia.com/
devnet. Reprinted with

 permission.

2� • mxdj.com 2 • 2006

Include Areas Without Slices check box
also enabled.
 Click the Options button and choose
your favorite HTML style and exten-
sion. Of the four check boxes on that
HTML Setup panel, you need to have
at least the bottom two selected (Use
CSS for Popup Menus and Write CSS to
an External File). Click OK to get out of
this HTML Setup panel and the previous
Export panel to save the files.
 Do the same for fourbutton.png (I
created a folder called fourbutton and
placed these files there). You have now
created all the files you need for the
remainder of this tutorial. For me, this
process gets the following relevant files in
the single folder (and analogous ones in
the fourbutton folder): singlebutton.html,
singlebutton.css, and mm_css_menu.
js. The singlebutton files will be used to
describe the details of the menu and its
construction. The fourbutton files are
there to examine the CSS needed for this
slightly more “real-world” example.
 The process of inserting these menus
into Dreamweaver is exactly the same
as it has been for several releases now.
Open your Dreamweaver page, place
the insertion point where you want
the menu inserted, and select Insert >
Image Objects > Fireworks HTML. For
the remainder of this tutorial, you will
examine the code written by Fireworks
to understand how these menus are built
and how they work. I will use the original
files written by Fireworks 8 for this expla-
nation.

Looking at the code
 A glance at the HTML immediately
reveals that these menus are very differ-
ent from those built in earlier versions of
Fireworks. The most significant difference
is that the links are not written into plain
HTML markup on the page.
 In Dreamweaver, I have defined a
site especially for this tutorial. The root
of this site contains both the single
and the fourbutton folders. To see how
Fireworks creates these menus, you
should start simple. Use the Code view in
Dreamweaver to take a look at the con-
tents of singlebutton.html in the simple
folder. You should see the following (the
markup follows):
• The page is linked to mm_css_menu.js,

a mere wisp of an 80-line JavaScript file

(compared to the original mm_menu.
js) containing the functions required to
show and hide the submenus and to
time their onscreen appearance.

• The CSS style sheet is specified with an
embedded @import rule, which hides
the styles from Netscape 4 and above.

• The CSS is linked with a “screen” media
type, which hides it from printers or
other devices.

• The menu and associated submenus
are placed within a single outer div
container, which will be called the
“menu div.”

• The menu itself is a standard HTML
anchor, placed in a table cell. This table
will be called the “menu table.”

• The submenu is actually a nest of
div tags placed in a div container,
located at the bottom of the menu
div’s markup below the table’s ending
tag and above the closing </div> tag.
This extra nesting is done presumably
to accommodate complex, multilevel
submenu systems.

• The submenu itself is nested within
a container div that’s specific for that
submenu.

• In the setup for the pop-up menus
(the Appearance tab), you can elect
to use either HTML or images for the
submenu links. In this tutorial, you left
the default values (HTML). Thus, the
submenu is created from a plain text
link, in this case, “Sub1-1.”

• There is a definite nomenclature used
to identify each of these elements:
the menu div, the submenu container
div, and the specific submenu div. This
nomenclature is a bit arcane, as you
will see.

 The salient HTML markup is shown
here (along with my additions and show-
ing the naming convention adopted for
the divs):

<div	id=”FWTableContainer165705776”><

!--	This	is	the	outer	menu	container	

div	-->

<table	border=”0”	cellpadding=”0”	

cellspacing=”0”	width=”640”><!--	This	

is	the	menu	table	-->

<!--	fwtable	fwsrc=”singlebutton.

png”	fwbase=”singlebutton.gif”	

fwstyle=”Dreamweaver”	fwdocid	=	

“165705776”	fwnested=”0”	-->

		<tr>

<!--	Shim	row,	height	1.	-->

...snip...

		<tr><!--	row	1	-->

...snip...

		</tr>

		<tr><!--	row	2	-->

			<td	rowspan=”2”>...snip...</td>

			<td><a	href=”javascript:;”	

onMouseOut=”MM_menuStartTime-

out(1000);”	onMouseOver=”MM_menuSho

wMenu(‘MMMenuContainer0817151145_0’,	

‘MMMenu0817151145_0’,0,23,’link1b

utton’);”><img	name=”link1button”	

src=”images/link1button.gif”	

width=”41”	height=”23”	border=”0”	

alt=””></td><!--	This	is	the	top	

menu	link	image	(link1button)	-->	

			<td	rowspan=”2”>...snip...</td>

			<td>...snip...</td>

		</tr>

		<tr><!--	row	3	-->

			<td>...snip...</td>

			<td>...snip...</td>

		</tr>

<!--			This	table	was	automatically	

created	with	Macromedia	Fireworks			-

->

<!--			http://www.macromedia.com			-->

</table>

<div	id=”MMMenuContainer0817151145_

0”><!--	This	is	the	submenu	div	-->

			<div	id=”MMMenu0817151145_0”	

onMouseOut=”MM_menuStartTime-

out(1000);”	onMouseOver=”MM_menuReset-

Timeout();”>

						<a	href=”#”	

id=”MMMenu0817151145_0_Item_0”	cla

ss=”MMMIFVStyleMMMenu0817151145_0”	

onMouseOver=”MM_menuOverMenuItem(‘MMMe

nu0817151145_0’);”>

									Sub1-1

						

			</div>

</div>

</div>

 The menu function is controlled by
event handlers applied to the various
</div> tags. The logic is remarkably
similar to the logic we used some years
ago when such menus were created
with DHTML timelines! Moving the
mouse over the top menu link shows the
submenu with a call to MM_menuSh-
owMenu, while moving the mouse away
starts an internal timer. When this timer
fires, the submenu is closed. Moving the
mouse over the submenu div stops the

2 • 2006 mxdj.com • 2�

timer started above, with a call to MM_
menuResetTimeout, while moving the
mouse away from this div starts it again.
 The CSS for this menu is written as fol-
lows:
• An initial rule forcing images in table

cells to display:block. This is a work-
around for Netscape’s strict interpreta-
tion of inline display of images with a
space underneath for text descenders
on pages without a valid and complete
doctype.

• A cascade of rules controlling the
styles of the various menu and sub-
menu divs and their contents, as you
would expect.

• A position:relative for the menu div.
This allows the menus to exist inside
a table cell if necessary, even though
they use absolute positioning.

• A box-model hack for Internet Explorer
prior to IE6 on the submenu.

• Absolute positioning on the submenu
div to place it, as desired, under the
top menu link.

 The details of the CSS file’s rules can
be obtained by examining the respective
CSS files produced by the export.
 For singlebutton.html, the CSS file is
81 lines long. For fourbutton.html, the
CSS file is 282 lines long; the additional
lines are required for the individual styl-
ing allowed for each submenu. This
means that more complex menus require
longer and longer CSS files.
 I would be remiss if I didn’t say more
about this particular naming scheme. The
nomenclature for the div tag IDs (hence
their style rule selectors) is quite obscure,
not to mention voluminous. Perhaps it
would be possible to look to the slice
names as a way of simplifying these IDs,
thereby reducing the space requirements
for them to be listed—not only on the
tag selector in Dreamweaver but also in
the code and CSS. As a user, you might
want to edit these manually to something
a bit more readable.
 In addition, providing an option to
style each submenu independently of the
others (this is really imposed by the user
interface for the menus because each
submenu is a separate entity) appears
to offer great flexibility, but it comes at
a heavy price. The markup on the page
as well as the selector nomenclature is
unnecessarily complicated by this flexibil-

ity. My personal opinion is that this extra
styling for each submenu is unnecessary.
The menu system would profit greatly
from this simplification.
 In summary, I think the design of
these pop-up menus is relatively stan-
dard, if not leading-edge. Most menu
systems now being shown, discussed,
and used are built on a nested list model
rather than isolated anchor tags with
show-hide div actions. The real benefit of
the former approach is simplicity in pre-
sentation when JavaScript is not available
and in semantic markup—lists having an
inherent meaning, not shared by a series
of adjacent anchor tags. I would person-
ally like to see such an approach as a
future enhancement in Fireworks.
 The menu should work well with
Dreamweaver templates and should
also be easily modified or debugged by
someone with modest HTML/CSS skills.
The menus themselves are readable by
search engine spiders, although—like
many other menu systems—they will not
function without JavaScript enabled.
 A final word of encouragement is
appropriate, I think. I am heartened to see
that it is possible to open an “old-style”
menu and resave it as a CSS menu. This is
a needed lifeline, in my opinion, for those
who may be struggling with the previous
all-JavaScript menus. I welcome its inclu-
sion.

Murray R. Summers is a Macromedia

Certified Web Site Developer and

Dreamweaver Developer and has contrib-

uted chapters to Dreamweaver 4 Magic

(New Riders Press, 2001), Dreamweaver

MX 2004 Magic (New Riders Press,

2003), and Dreamweaver 4: The Missing

Manual by David Sawyer McFarland

(O’Reilly, 2001). He was technical editor

on the latter publication and on Roadmap

to Macromedia Contribute by Joseph

Lowery (Macromedia Press, 2003). Along

with Brad Halstead, he cowrote the defini-

tive study of the use of Dreamweaver MX

snippets, library items, and templates in

Dreamweaver MX Templates (New Riders

Press, 2002). He has served as an invited

speaker at TODCON (2001, Orlando),

TODCON II (2002, Chicago), TODCON

North (2003, Toronto), TODCON MX

(2003, Las Vegas), TODCON IV (2004),

and TODCON V (2005), and will hopefully

continue to do so!

“I am
heartened to
see that it is

possible to
open an

‘old-style’
menu and

resave it as a
CSS menu”

30 • mxdj.com 2 • 2006

pplications for Macromedia
Central can be licensed in
any number of ways, thanks

to the Open Distribution license intro-
duced with Central 1.5. Getting started
with managing licenses for your users
can be tricky. Central Open Licensing
Architecture (COLA) solves this problem
by solving the issues of license manage-
ment and providing a starting point
for developers to implement their own
license models. Version 1 is a reference
implementation for PHP or Macromedia
ColdFusion.

coLA in a Nutshell
 COLA provides a method for process-
ing and tracking licenses for commer-
cial Macromedia Central applications.
It is server software in Macromedia
ColdFusion and PHP that provides secure,
automated payment and software
licensing management, and enables
you to sell an application to an end user.
COLA gives developers a wide range of
licensing options and can be modified
as needed. Since COLA integrates with
PayPal, software licensing and delivery
is fully automated. The software ships as
a reference implementation providing a
solid foundation from which to customize
a licensing solution. COLA is released as
an open model—you can use it for free
and modify the source code to suit your
needs.
 COLA manages software licenses on
the server side through the product.xml
file for a Central application. For every
licensed user in COLA, there is a unique

URL to the product.xml file. As such,
COLA has the ability to manage a single
user allowing for simple license creation
and expiration. COLA also provides the
ability to detect fraudulent installations
and prevent them from occurring. Unlike
the try/buy model, you can easily revoke
a license server-side that has been pro-
vided to an end user.
 COLA is a gift to the Central developer
community. However, it is not the final
word on licensing Central applications.
Thanks to COLA, developers can con-
struct their own licensing schemes, and
are encouraged to use COLA as a starting
point. COLA is provided as is; it is sup-
ported neither by Macromedia nor by
PowerSDK Software Corp.

coLA Security
 COLA security is based on the instal-
lation services provided by Central. When
any application is installed, the URL to the
product.xml file is encrypted and stored
within Central. To make COLA simple,
we reused this feature to store a license
securely in the same way. In COLA, the
individual license identifier is encoded in
the URL to the product.xml file. This pro-
vides a first line of defense, since Central
stores only the encrypted form of the
URL. The second line of defense is that
COLA can detect multiple installations
for a single license. Should a user obtain
a product.xml URL, the server can detect
unauthorized installations and licenses
can be easily revoked.
 COLA passes values using the MD5
hash format. MD5 is designed to produce

a unique hash from an initial value. It is
theoretically impossible to calculate the
value from a hash so these are typically
described as one-way hash functions.
Within a COLA secured application,
the License ID (LID) only occurs within
the product.xml URL. All other files are
secured under the hash of the LID. If
you look at the Central path for a COLA
application you can see the hash(LID)
value but not the LID. This makes it easy
for any part of an application (pod, agent,
or shell) to test the license server side by
simply passing the hash of the LID.
 Because COLA does not require any
modifications of an application’s SWF file,
it is essentially transparent to the devel-
oper. The developer need only create a
licensed version of a Central application
and modify the product.xml template.
You also have the option to use COLA’s
server-side logic to integrate security
more tightly. COLA provides a means of
testing the license of a running applica-
tion through an XML file and provides a
callback to disable secondary installation.
 As I mentioned earlier, you are free
to extend and modify COLA to suit your
needs. COLA provides a solid foundation
on which to build custom commercial
Central applications. It is simple enough
to secure a wide range of applications
and can be customized easily.

coLA Example
 It is helpful to understand the flow of
licensing a COLA application. The follow-
ing steps walk you through the entire pro-
cess of a user purchasing an application:

Introducing COLA

COLA in a Nutshell
by ted patrick

cola

a

This article originally
appeared on

www.macromedia.com/
devnet. Reprinted with

 permission.

32 • mxdj.com 2 • 2006

• The user installs a demo version of Icon
Builder from the Central Application
Finder.

• Note: Demo and trial versions are nor-
mal Central applications with limited
functionality or timeouts.

• The user clicks a purchase button
within the demo version and is taken
to the PayPal site.

• The user completes purchase at PayPal.
• PayPal IPN notification calls the COLA

IPN script. IPN notification is a private
server-to-server HTTP/HTTPS POST
request. The IPN request contains the
purchase information and confirms
that the user has purchased an applica-
tion.

• The COLA IPN script creates a new
License ID (LID) and an Install ID (IID)
for the user. The script then e-mails the
user an installation URL that contains
the IID value along with a friendly mes-
sage confirming the purchase.

• The user opens an e-mail and clicks the
installation URL. The installation badge
for the licensed application is displayed
to the user.

• The user clicks the installation badge.
Central is passed the licensed ver-
sion of the product.xml URL, and the

licensed version of the application is
installed. The product.xml file contains
a <file> tag that invalidates the instal-
lation URL and installation badge by
contacting the server. Note that the
LID persists on the server; only the IID
is single-use.

• The user has a COLA application
installed. The installation URL is no
longer valid preventing subsequent
installations.

 There are additional ways to use COLA
beyond providing e-commerce function-
ality. The following list provides a few
alternative ways of how you might use
COLA:
• Enhanced security: Since each COLA

installation contains a unique ID, you
can augment security for network
services with COLA. Instead of requir-
ing only a user name and password,
users must also access services from a
Central application licensed to them.

• Private applications: COLA can be used
to distribute private versions of an
application. Say you have a customer
service application that you do not
want to expose publicly. Adding this
application under COLA allows the

application to reside privately on the
Internet and enables you to manage
access closely through licenses.

• Subscriptions: COLA can be used to
secure subscription services. As each
user is granted a unique license, you
can allocate or remove content based
on a user’s license. Also, since licenses
reside server side, you can upgrade a
user from one type of access level to
another with no installation changes.

• Personalized applications: With
Macromedia Flex you can generate
applications for end users based on
their LID values. The contents of the
SWF files installed within Central differ
on a per-user basis.

 COLA doesn’t solve every problem
for you. In providing an open solution,
COLA enables you to add functionality to
suit your own needs. Should you not find
what you need in the base COLA features,
just add it.

coLA Benefits
 COLA offers the following benefits:
• A wide range of features for develop-

ing Central applications.
• A Rich Internet Application (RIA) for

2 • 2006 mxdj.com • 33

managing COLA licenses on the server
side. The RIA unifies all the server
features into a single location. This
enables developers to view, create, or
delete licenses and installations from
the server. The RIA also enables you to
create a license without requiring pay-
ment for testing, promotional, or other
needs.

• Integration with third-party payment
providers. The reference application
ships with support for PayPal through
Instant Payment Notification (IPN).
When a payment is processed, IPN
calls a URL. COLA supplies a working
example of an IPN application that can
create a license and installation, and
then e-mail customers their licenses.

 Basic support for monitoring instal-
lation activity and detecting fraud. This
can be easily integrated with reporting to
provide a view of an installation activity.

coLA License and
Installation
 COLA is an unsupported product (see
disclaimer). It is provided in source format
for your own use within development
projects. COLA is free and you can extend
it to suit your needs. In general, COLA
facilitates the creation of commercial
applications in Central while providing a
rich set of features.

Installing coLA
 To try COLA for yourself, follow these
steps:
• Download cola1.0.zip if you haven’t

done so already. This source distribu-
tion contains implementations for
ColdFusion and PHP in the COLA_CF
and COLA_PHP subdirectories, respec-
tively.

• Copy the appropriate implementation
to your hosting server. The directory
tree should be posted to the directory
from which you will deliver your appli-
cation.

• In the “try” directory, place the trial version
of your application. Modify the product.
xml file to install your application.

• In the “buy” directory, place the
licensed version of your application.
Modify the product.xml file to install
correctly.

• If you are installing COLA_CF imple-
mentation, create the “cfcola” data
source on your ColdFusion server,
using the cola.mdb Access database
provided (or create an equivalent data
source for your database of choice).

• Edit cola.cfm or manager.php to reflect
your install location, and to change the
default value for the admin key (used
to view the admin panel and manage
licenses and installations).

• Consult readme.html for further
instructions.

• Navigate to the admin panel in a
browser. If you installed COLA for
an application hosted at http://
mydomain.com/myapp, and your
admin key is admin (not recom-
mended!), the proper URL would be
as follows:

	COLA_PHP:	http://mydomain.com/myapp/

admin/

	COLA_CF:	http://mydomain.com/myapp/

cola.cfm?admin=admin

 You should now be able to install trial
applications, create licenses and instal-
lation IDs using the COLA admin panel,
and install licensed applications. Refer to
interface.html to determine the proper
URLs for testing each operation.

Summary
 COLA is free, server-side software that
assists developers in creating secure com-
mercial Central applications. It offers a
solid foundation on which to start devel-
opment. After having written several
commercial Central applications myself, I
can confirm that COLA provides a balance
of features to support most commercial
development. Because it is distributed as
an an example of open-source software, it
allows for deeper integration and tighter
security.

Ted Patrick is the founder and principal

developer at PowerSDK Software Corp.

As a consultant, Ted has contributed

to the technical side of many leading

Macromedia Flash development projects

and delivered presentations at confer-

ences on Flash technology. You can check

out his blog for more information about

Flash-related technology.

“COLA
is free,

server-side
software

that assists
developers in

creating secure
commercial

Central
applications”

3� • mxdj.com 2 • 2006

ne of the unique features of
the Macromedia Breeze 5
Meeting module is the abil-

ity to capture or record the meetings as
they take place for future replay. After
a recording session finishes, the Breeze
5 Meeting module creates SWF files to
allow for easy delivery of the recording
over the web.
 Another useful feature of Macromedia
Breeze 5 is the ability to integrate Breeze
in existing systems through the use of
the Breeze Web Services API. Through
web services, an exciting amount of
opportunities become available to Breeze
implementers–opportunities such as
creating custom event listings and event
and meeting detail pages. Another
opportunity includes building reporting
dashboards for graphically represent-
ing specific data sets on meeting usage,
course reports, and event effectiveness.
The beauty of the data being available
as web services is in how it allows you
to manipulate and integrate the data in
ways that fit your organization best.
 In this article, I focus on the Breeze
Web Services API that allows you to
retrieve a list of all the recordings associ-
ated with a single meeting. You can imag-
ine the different contexts in which this
information may be useful. For example,
Colleges and Universities that want to
integrate Macromedia Breeze into a
course management system can quickly
allow their clients to see a list of record-
ings for a meeting without leaving the
course management system. Instructors
who record every lecture with the Breeze
5 Live Meeting Module will find this list
embedded in the context of their course
extremely useful. After you have finished

this tutorial, you will be able to visualize
how your organization can take advan-
tage of the Breeze Web Services API.

Getting Started
 To get started, I will review how appli-
cations interact with Macromedia Breeze
5 through web services.
 In this tutorial I will review an applica-
tion that does the following activities:
• Create a Breeze session
• Retrieve XML containing a recording

list from Breeze 5
• Convert XML to a Coldfusion MX 7

query object
• Display the recordings query

 Unzip the recording_list.zip file you
downloaded at the beginning of this
article. In this archive you will find the fol-
lowing files:

MeetingManager.cfc

 This file manages the retrieval and
conversion of recordings from the Breeze
server.

SessionManager.cfc

 This file manages the creation of ses-
sions and destroying of sessions. You can
reuse this component for any other web
service integration you might do in the
future.
RecordingList.cfm
 This file is the beginning page and
calls the two CFCs previously mentioned
to retrieve and then to display the list of
recordings.

ReadMe.txt

 This file contains the file descriptions
listed previously and any additional con-
figuration notes relative to getting the
sample code to run.
 Before I walk you through the code, I
would like to examine the individual web
services that you will use. Breeze web
services operate with commands called
actions. You will use the login, logout,
user-accounts, sco-info, and sco-contents
actions. You will need to use the user-
accounts action after logging in to verify
that the session ID is valid and also to
acquire the principal ID associated with
the session. You will use the sco-info and
sco-contents actions to retrieve all of the
records associated with the meeting and
the specific details about each recording
in the list. You can use these three actions
to retrieve a great deal of other informa-
tion, but an explanation of this is outside
the scope of this tutorial.

RecordingsList.cfm
Explained
 To begin I will first review recording-
sList.cfm. You use this file to display data
to the user and to call the CFCs, which
will communicate with the Breeze server
to get the recording data. First you must
set some variables, which are needed for
the CFCs to work properly (accesskey,
webServicesUrl, meetingID, username,
password). The username and password
credentials should have proper rights to
the meeting in which you are retrieving
recordings for. You can leave the access-
key blank for Breeze 5 users; if you are still
using Breeze 4.1
 You must supply the correct access-
key to execute web services on the
Breeze server. Contact your Breeze

Using Breeze Web Services to
Display a List of Recordings for
a Meeting

 The Breeze 5 Meeting module creates SWF
files to allow for easy delivery of the recording over the web

by joseph d. baarsch

web services

o

This article originally
appeared on

www.macromedia.com/
devnet. Reprinted with

 permission.

36 • mxdj.com 2 • 2006

administrator to locate the accesskey.
The webServicesUrl should be the URL
to the Breeze server ending with a “/” (for
example, http://breeze.uwstout.edu/).
 After setting these variables in
recordingsList.cfm, you must handle
the creation of the CFCs and retrieve
the recordings for the meeting speci-
fied. When you create the CFCs, the first
thing to do is call the init method inside
of the CFC. This method is designed to
be a constructor method, which is used
in object-orientated languages, such
as Java. Since Coldfusion components
do not have a constructor that is called
implicitly, I usually call the init method
explicitly to achieve the same effect.
Next, call the createSession() method
of the SessionManager component,
which takes the username and password
and returns a valid session ID. Pass the
session ID into the MeetingManager.
cfc getRecordings()method. Then you
end the session promptly by calling
the terminateSession() method on the
SessionManager. The process of contact-
ing the Breeze server and manipulating
the XML returned is encapsulated inside
these aforementioned methods. This is
done by design to remove unnecessary
complexity from the display page and to
encourage reuse of the components. The
rest of the recordingsList.cfm is provided
to display the meeting list.

Handling Session
management in
Sessionmanager.cfc
 Now you can turn your attention to
SessionManager.cfc. The SessionManager
component has four methods: init(),
createSession(), getPrincipleID(), and ter-
minateSession(). The init() method simply
sets a few variables and does not require
much attention. The CreateSession()
method is charged with calling the login
web service action and pulling the ses-
sion ID out of the results. I use the cfhttp
tag to handle the request to the Breeze
server as shown below:

<cfset	params	=	“accesskey=#variables.

accessKey#&action=login&login=#usernam

e#&password=#password#”	/>

<cfhttp	url=”#webServiceUrl#api/

xml?#params#”	method=”get”	/>

Note:	As	I	mentioned	earlier,	access-

key	is	only	needed	for	Breeze	4.1.	If	

you	are	using	Breeze	5,	you	don’t	need	

to	use	accesskey.

 Look specifically at the cfhttp.respon-
seHeader variable to find the session ID in
the header. See the Breeze Web Services
API for more details on this process.
 The getPrincipleID() method is used to
obtain the principleID associated with a
username and password. You can do this
by calling the user-accounts web service
action and then use the xmlSearch() func-
tion to verify that the request was returned.
If so, extract the principleID from the return
XML string. When extracting data from
an XML object, it is sometimes helpful to
use the cfdump tag on the XML object to
take a look at the structure. Otherwise you
may run into problems trying to obtain the
exact path of the node data you are looking
for. In this case, you can locate the princi-
pleID using this syntax:

<cfset	principalID	=	xml.results.

users.user.XmlAttributes[“user-id”]>

 Once you have obtained the princi-
pleID from the return XML you can return
it to the calling script with a cfreturn tag.
 The terminateSession() method sim-
ply calls the logout web service action
with the session ID to end the session
on the Breeze server. You will notice by
looking at this method that the same
set of ColdFusion tags are used to call
and interpret an action from the Breeze
server. I will parameterize this com-
mon task and construct it as a reusable
method in the next CFC to increase
cohesiveness.

manipulating xmL data in
meetingmanager.cfc
 Look at the meetingManager.cfc
to see how I acquire the list of record-
ings and convert them into a query
object. The MeetingManager.cfc has
two public methods and four private
ones. The public methods are init() and
getRecordings(). The private methods
are scoArray2Query(), sco2Record(),
ISO8601ToDate(), and callBreeze(). The
getRecordings() method is the only
method the outside world cares about.
The private methods are used internally
in this component and exist to achieve
highly cohesive code fragments. If you
where to extend the functionality of the
MeetingManager component or use it
in a different context, you may want to
make these methods public. However, for
the purposes of this tutorial they should
remain private. The getRecordings() takes
two parameters, meetingID and a session
ID. From these two pieces of information
you will be able to call a series of web
services actions to find all the data you
need on the recordings for the meeting
in question. You can start out by calling
the sco-contents web service to obtain
all the sco objects for this meeting. In
the MeetingManager.cfc, I have broken
out the task of calling the Breeze server
into one common method that takes
in parameters and passes back an XML
string. This common functionality is con-
tained in the callBreeze() private method.
You will use this method to obtain a list
of sco’s, at which point you then use the
xmlSearch() ColdFusion function to filter
out all sco’s that are not of type archive.

Joseph D. Baarsch is

currently employed as

a Systems Developer

at the University of

Wisconsin – Stout and

also does software

engineering consult-

ing through Spectrum

Interactive LLC. In addi-

tion to his full time work,

Joseph is deepening his

understanding of engi-

neering and design prin-

ciples at the University

of Minnesota in their

Masters of Science in

Software Engineering

program.

“Another useful feature of
Macromedia Breeze 5 is the
ability to integrate Breeze
in existing systems through
the use of the Breeze Web
Services API”

2 • 2006 mxdj.com • 3�

<cfset	recordings	=	

xmlSearch(xmlOutput,	“//sco[@

icon=’archive’]”)>

 This type is what Breeze 5 associates
with all recording sco’s. The ColdFusion
function xmlSearch() returns a data struc-
ture of type array, which is then pass to
the scoArray2Query() private method for
conversion to data type query.
 You will be converting the XML to
a query because when an XML node
is returned from Breeze 5, the data is
fragmented inside the heavily nested
structure of XML, which complicates data
manipulation for display. In addition to
this, you are going to need to get more
details about each recording before pro-
ducing the list to the user.
 Inside the scoArray2Query() method,
I take the array of recording nodes and
loop through each node and call the sco-
info web service action for each record-
ing in the array. You need to do this step
to get more detailed information about
the recording that is not provided in the
initial node returned by the sco-contents

web service action. Once this call is made,
you will pass the XML to the sco2Record()
method to convert the XML into a query
record. This is done by using the query-
AddRow() and querySetCell() ColdFusion
functions. One way that I have found to
extract data from an XML node is to use
the cfswitch and cfcase tags inside, of a
cfloop structure.

<cfloop	from=”1”	to=”#arrayLen(node.

xmlChildren)#”	index=”key”>

	<cfswitch	expression=”#node.

xmlChildren[key].xmlName#”>

		<cfcase	value=”date-created”	>

			…	do	something	…

		</cfcase>

		<cfcase	value=”name”>

			…	do	something	…

		</cfcase>

		…

	</cfswitch>

</cfloop>

 In this method I also call the
ISO8601ToDate() method to convert
Breeze dates to ColdFusion data types.
This method could be a global function

for your application but for this tutorial I
have made it part of the MeetingManager
component. After the sco2Record()
method has finished executing, control
is returned to the calling method, scoAr-
ray2Query(). This method continues to
loop through all of the elements in the
array and then returns the resulting query
data structure through its cfreturn tag.
This returns control to the getRecord-
ings() method, which returns the query to
recordingList.cfm.
 At this point you can run this code on
your server by calling the recordingList.
cfm in the browser. To verify that it is
working, specify a meetingID to a meet-
ing that has two or three recordings.
Once run, your app will display a cfdump
structure for the query object.

Where to Go from Here
 Now that you understand the pieces
of this application, I encourage you to
extend the application a bit. One way to
extend the application would be to for-
mat the resulting query object in HTML
and CSS. If you go this route, try to make
the recording title a link to the actual
recording. To facilitate single sign-on,
remove the call to terminateSession() in
recordingList.cfm and pass the session
ID in the recording URL. Another exten-
sion could be to create a new method in
MeetingManager.cfc called getPresenta-
tions() to return a query of presentations
associated with a particular meeting.
The getPresentations() method would be
almost identical except you would need
to filter on type presentation rather than
archive.
 I would also encourage you to try
to integrate this code into your existing
application. You may do this by populat-
ing the variables at the top of recording-
List.cfm by using session, URL, or form-
scoped variables. Perhaps you might set
the Breeze URL in application.cfm along
with the accessKey for Breeze 4.1 users.
 Congratulations! You are well on your
way to unlocking one of the best kept
secrets in the Breeze Web Services API.
Today you worked with some of the most
important web services actions such as
login, logout, sco-info, and user-info.
From this point you should be able to
experiment with the entire set of web
services to best suit your application and
integration needs. Happy coding!

3� • mxdj.com 2 • 2006

COPYRIGHT ©2006 SYS-CON MEDIA ALL RIGHTS RESERVED NOTE: SPEAKER LINE-UP SUBJECT TO CHANGE WITHOUT NOTICE

f you have used Macromedia
Captivate to create interactive
software training simulations, you
have probably come across a situ-

ation where you needed to simulate a
right-click event. Unfortunately, the cur-
rent version of Captivate cannot directly
support this functionality because
Macromedia Flash Player uses the right-
click event to trigger the player menu,
which enables you to change player
settings or zoom in and out of the SWF
file that is playing. This restriction can be
frustrating if your demonstration or simu-
lation needs to show that your software
has functions only available by perform-
ing a right-click action.
 Instead of trying to avoid right-click
events, I have come up with a solution
that simulates right-click functionality.
This article explains my solution, which
incorporates elements of HTML, CSS, and
JavaScript.

configuring the HTmL and
cSS for a Shield
 There is no way to stop the Flash
Player context menu from appearing
when it detects a right-click, but there
are ways to stop the player from realizing
that a right-click event has occurred. One
way of doing this is to make the user
think they clicked a Flash object when
instead they clicked an invisible object
placed in front of it. This way the invisible
object acts as a shield that protects the
Flash object from being clicked.
 Before creating the “shield” layer, you
must properly configure the Captivate
object. Adjust the standard HTML output
that Captivate generates with the follow-
ing simple modifications:

• Set the object’s id attribute to “cp”.
• Add the wmode parameter and set it

to “transparent”.
• Add the embed tag with the swlive-

connect attribute set to “true”.

 After making these changes, your
HTML code for the Captivate object
should look like the following (with your
own width, height, and filename values):

<object	classid=”clsid:D27CDB6E-

AE6D-11cf-96B8-444553540000”	

codebase=”http://download.macromedia.

com/pub/shockwave/cabs/flash/swflash.

cab#version=6,0,29,0”	width=”303”	

height=”320”	id=”cp”>

				<param	name=”movie”	value=”right-

click-functionality.swf”>

				<param	name=”quality”	

value=”high”>

				<param	name=”menu”	value=”false”>

				<param	name=”loop”	value=”0”>

				<param	name=”wmode”	

value=”transparent”>

				<param	name=”AllowScriptAccess”	

value=”always”>

				<embed	src=”right-click-function-

ality.swf”	AllowScriptAccess=”always

”	width=”303”	height=”320”	loop=”0”	

quality=”high”	pluginspage=”http://

www.macromedia.com/go/getflashplayer”	

type=”application/x-shockwave-flash”	

menu=”false”	swliveconnect=”true”></

embed>

</object>

 Now that you have set up the movie
object correctly, add the shield layer on
top of it. Start by inserting the following
HTML just above the object tag:

<div	id=”shield”><img	

src=”transparent.gif”	class=”shield”	

galleryimg=”no”></div>

 The shield layer contains a transpar-
ent image that stops any mouse clicks
from reaching the Flash application.
Setting the galleryimg attribute to “no”
prevents Internet Explorer from display-
ing the Image toolbar that appears when
a user hovers over an image with the
mouse.
 The CSS for the shield image, shield
layer, and Captivate content is quite
simple:

div#shield	{

				z-index:	2;

				position:	absolute;

				display:	none;

}

img.shield	{

				width:	100%;

				height:	100%;

}

#cp	{

				z-index:	1;

				position:	relative;

}

 You can add the CSS directly to the
styles defined in the head of the HTML
file, or place them in an externally linked
style sheet.
 This code sets the transparent GIF file
to occupy 100% of the space of the shield
layer. The shield layer is set so that it will
not appear by default, and its position
is set to “absolute”. The Z-index property
specifies for the browser how to stack

Adding Right-Click Functionality
to Captivate Content

Instead of trying to avoid right-click events,
I have come up with a solution that simulates right-click functionality

by steven shongrunden

functionality

i

This article originally
appeared on

www.macromedia.com/
devnet. Reprinted with

 permission.

�0 • mxdj.com 2 • 2006

components on the screen. Because the
shield must be on top of the Captivate
SWF file, you must set the shield’s Z-index
higher.

Setting Up the captivate
Source File
 I used JavaScript to create most of
the functionality in this solution. The
JavaScript code positions the shield, turns
it on and off, and decides if the user right-
clicked in the appropriate area.
 Before you can use the JavaScript
code, you need some information
from the Captivate content. You need
to specify when the JavaScript should
show the shield and where the user
must click to advance to the next
slide.
 I created a special SWF file to handle
this responsibility (see the right-click-
box.swf file in the sample file at the
beginning of this article). Think of this
SWF file as Captivate’s built-in Click Box.
When the animation appears in the
Timeline, it specifies the JavaScript to
enable right-click functionality. If a slide
in your Captivate content requires a
right-click to advance, use the following
steps as you author your Captivate con-
tent:
• Start Demo: Adding Right Click

Functionality to Captivate Content
• Add a Click Box over the target area.
• Click the Insert menu, select

Animation, and select the right-click-
box.swf file.

• Place the animation over the Click Box.
• Ensure that the animation does not

touch the start or end of the slide in
the Timeline.

 The animation must not touch
the start or end of the slide’s Timeline
because that could cause problems with
enabling right-click functionality on slides
before or after the current slide.
 After following these steps and pub-
lishing your Captivate content as a SWF
file, you are ready finally to implement
the JavaScript that brings everything
together.

Note: Moving data from Captivate to

JavaScript in this fashion is outside the

scope of this article. Interested Flash

developers can examine the right-click-

box.fla sample file to see how I do this.

Implementing the
javaScript
 The JavaScript can be broken down
into three sections. One section acquires
the necessary data from the Captivate
demo or simulation, another section
sets up the shield, and the final section
decides what to do when the user right-
clicks the shield.
 The first section is called when the
right-click-box.swf animation starts to
play in the Timeline:

//	Array	to	hold	data	sent	by	the	

right-click	box	we	inserted	in	

Captivate	

			var	rightClickBoxData	=	new	

Array(4);

//	Receive	the	function	call	from	the	

movie	clip

			var	InternetExplorer	=	navigator.

appName.indexOf(“Microsoft”)	!=	-1;

			function	cp_DoFSCommand(command,	

args)	{

							var	myFlashObj	=	

InternetExplorer	?	cp	:	document.cp;

		

				//	Set	the	dimensions	of	the	

right	click	box

				//	rightClickBoxData[0]	=	x	posi-

tion	(relative	to	Captivate	movie)

				//	rightClickBoxData[1]	=	y	posi-

tion	(relative	to	Captivate	movie)

				//	rightClickBoxData[2]	=	width

				//	rightClickBoxData[3]	=	height

							rightClickBoxData	=	args.

split(“	“);

		

				//	Enable	right	click	functional-

ity

							rightClickToAd-

vance();

}

if	(navigator.appName	

&&	navigator.appName.

indexOf(“Microsoft”)	!=	-

1	&&	navigator.userAgent.

indexOf(“Windows”)	!=	-1	

&&	navigator.userAgent.

indexOf(“Windows	3.1”)	==	

-1)	{

		document.write(‘<SCRIPT	

LANGUAGE=VBScript\>	\n’);

		document.write(‘on	error	

resume	next	\n’);

		document.write(‘Sub	

cp_FSCommand(ByVal	command,	

ByVal	args)\n’);

		document.write(‘	call	cp_

DoFSCommand(command,	args)\n’);

		document.write(‘end	sub\n’);

		document.write(‘</SCRIPT\”	\n’);

}

 When the second section runs, it calls
the rightClickToAdvance() function, which
enables and positions the shield:

function	rightClickToAdvance(){

				//	Define	the	shield	and	

Captivate	objects

		var	shield	=	document.getElementByI

d(“shield”);

		var	cp					=	document.

getElementById(“cp”);

	

				//	Enable	the	shield

		shield.style.display	=	“inline”;

	

				//	Place	the	shield	over	top	of	

only	the	Captivate	SWF	file

		shield.style.top	=	cp.offsetTop;

		shield.style.left	=	cp.offsetLeft;

		shield.style.width	=	cp.width;

		shield.style.height	=	cp.height;

	

				//	Perform	the	userRightClicked	

function	when	the	user	press	the	right	

mouse	button

		document.oncontextmenu	=	userRight-

Clicked;

	

				//	Stop	the	user	from	being	able	

to	select	the	shield

		document.onselectstart	=	new	

Function	(“return	false”);

}

2 • 2006 mxdj.com • �1

 The last section of code indicates
to the browser that right-clicks
should call the userRightClicked()
function.
 The userRightClicked() function
determines whether the user right-
clicked a location inside the target
area of the right-click box. If the user’s
right-click was not in the target area,
nothing happens. If the user right-clicks
the target area, the userRightClicked()
function disables the shield, advances
the Captivate simulation to the next
slide, and returns functionality back to
normal:

		//	Function	to	handle	when	the	user	

right	clicks	on	the	shield

function	userRightClicked()	{

				//	Get	the	dimensions	of	the	

user’s	click

		var	clickX	=	event.clientX	+	docu-

ment.body.scrollLeft;

		var	clickY	=	event.clientY	+	docu-

ment.body.scrollTop;

	

				//	Get	the	dimensions	of	the	

right	click	box

		var	dimX	=	eval(rightClickBoxData

[0]);

		var	dimY	=	eval(rightClickBoxData

[1]);

		var	width	=	eval(rightClickBoxData

[2]);

		var	height	=	eval(rightClickBoxDat

a[3]);

		

				//	Get	the	position	of	the	

Captivate	content	relative	to	the	top	

left	corner	of	the	page

		var	cpX	=	document.

getElementById(“cp”).offsetLeft;

		var	cpY	=	document.

getElementById(“cp”).offsetTop;

				//	Only	advance	the	slide	if	the	

user	right-clicked	in	the	correct	area

		if	((clickX	>	cpX	+	dimX)	&&	

(clickX	<	cpX	+	dimX	+	width)){

				if	((clickY	>	cpY	+	dimY)	&&	

(clickY	<	cpY	+	dimY	+	height)){

		

								//	Advance	the	slide

						window.cp.SetVariable(“rdcmndNex

tSlide”,”1”);

								

		//	Get	rid	of	the	shield

						document.

getElementById(“shield”).style.display	

=	“none”;

								//	Return	to	normal	function-

ality

						document.oncontextmenu	=	null;

						document.onselectstart	=	null;

				}

		}

	

return	false;

}

 After combining all of these elements,
your Captivate content now has fully
functional, right-click simulation abilities.
If you don’t want to code this tutorial
from scratch, edit the right-click-function-
ality-example.htm page and modify the
object tag’s attributes for filename, width,
and height to reflect your Captivate SWF
file.

Note: Before running the follow-

ing Captivate simulation on your local

machine, you must make a change in

Flash Player 8 settings. New security

features in Flash Player 8 stop Captivate

from communicating with JavaScript

when you view the file on your local hard

drive. Follow the instructions in the Breeze

Presenter TechNote, Security Warning

with Flash Player 8, to change these set-

tings in Flash Player 8 so that you can

run these files properly on your local

hard drive. This issue does not apply to

Captivate content hosted on a web server.

The right-click functionality only runs on

Microsoft Internet Explorer.

 Start simulation of right-click func-
tionality
 In the simulation, the prompt asks
you to click “Close”. Right-click My
Computer to see the simulated right-click
functionality explained in this tutorial.

Where to Go from Here
 This article demonstrated a method
of modifying your Captivate content to
simulate right-click events. The solution
may not be perfect but it’s a step in the
right direction. I hope it will help take
your Captivate projects further and allow
you to develop even more effective soft-
ware simulations.
 This code was developed and
tested exclusively with Microsoft Internet
Explorer 6 on Windows XP; compatibility
with other versions or browsers is highly
unlikely—or at least unknown at this
time. Creating a cross-browser alternative
would be very useful to allow non-IE6
users to enjoy this right-click functional-
ity.
 If you have any suggestions on how
to improve any aspect of this method,
including cross-browser support, feel free
to contact me at steve@suncitydesign.
com. I would be happy to discuss any
further enhancements or problems you
might have to make this method as use-
ful as possible.

Steven Shongrunden has been developing

leading-edge e-learning solutions for the

past three years. He is the owner of Sun

City Design, an Internet marketing and

consulting firm in Canada. He manages all

aspects of the company’s web develop-

ment and technical training solutions.

�2 • mxdj.com 2 • 2006

 © 2005 WEB SERVICES EDGE. ALL RIGHTS RESERVED

ommunication Server (FCS)
together provide an amazing
toolbox that will undoubtedly

provide inspiration to thousands of devel-
opers and projects. Unfortunately, with-
out concrete examples and guidelines
for good practices on their integration,
we spent many hours on tiny issues that,
with additional information, could have
been easily circumnavigated.
 Those hours of trail-blazing are the
inspiration for this article. This article
tackles the basic integration of how to
use a remote shared object on FCS with
Flex. Our goal was to make this integra-
tion as simple and straightforward as
using a web service from within a Flex
MXML file.
 Flex and FCS provide the foundation
for Internet applications that deliver
continually changing data to the desktop.
This technology, called data push, allows
a developer to update information on a
user’s screen without a browser refresh.
In our company, we use this technology
to build interactive auction sites that,
within moments of a new bid, deliver
updated prices on thousands of items
to users around the world and update
business systems that track critical orders,
from estimate through final delivery. This
coupling of technology can help you
build any application where presentation,
collaboration, and up-to-the-moment
information is paramount.
 Before continuing, I must empha-
size that this is a basic implementation
and a basic example. If you want to dig
into more complex implementations,
read, “Developing Rich Clients with
Macromedia Flex” and “Programming
Flash Communication Server.” These

books have become invaluable to our
organization, and I can’t say enough posi-
tive things about both of them.

The Project and Approach
 In this project, a remote shared object
on a Flash Communication Server contains
data that changes frequently. It is impera-
tive that the client immediately receive
this data without any need to refresh.
 In our approach, we connect to FCS
server, attach to the remote shared
object, and display the data in a Flex
DataGrid control. Then, using FCS and
Flex, we push changes to the client with
Flex data-binding capabilities, so that
the DataGrid displays updated data as
changes occur.

The Project Scope
 You can accomplish 95% of this
project solely through MXML con-
structs, without ever writing a line of
ActionScript; however, there are a few
issues to understand.
• Flex has components available for

WebService and RemoteObject con-
nections that you can easily access
through MXML. Our team wanted to
offer this same feature for FCS connec-
tions and gain some event listener and
broadcasting capabilities.

• The SharedObject class is static, and
therefore it is not used from within
MXML in the same way as familiar Flex
components. Our team thought that a
wrapper for this class that interacted
with FCS and provided the user with
viable events would be a useful.

 If the above points are a bit foreign
right now, that is okay. They will become

clearer in the course of this and other
articles; also, using the following compo-
nents, you can still work with FCS.
 Please take a moment and review
FCSService and SharedRemote class
documentation, available from the
fcs_flex_sample.zip that you downloaded
at the beginning of this article.
• FCSService documentation (fcsser-

vice_class_readme.html)
• SharedRemote documentation (share-

dremote_class_readme.html)
• Examples of using the two classes

together (two_classes_example.html)
• FCSService.as
• SharedRemote.as

 Now read on to assemble the applica-
tion.

The Layout
 The following example creates a
DataGrid control that displays in 90%
of the available horizontal and vertical
space.
 You can create the following MXML
file and name it flexFCS_01.mxml, or
you can open the solution file (flexFCS_
01.mxml) available in the ZIP file that you
downloaded in the Requirements section
of this article.

Example 1: flexFcS_01.mxml

<?xml	version=”1.0”	encoding=”utf-8”?>	

<mx:Application	xmlns:mx=”http://www.

macromedia.com/2003/mxml”	

																					xmlns=”*”	

																					creationComplet

e=”initializeApplication(event)”>	

					<mx:Script>	

					<![CDATA[

Integrating Remote Shared
Objects with Flex and Flash
Communication Server

In this project, a remote shared object on a Flash Communication Server
contains data that changes frequently

by michael labriola

flash comm

c

This article originally
appeared on

www.macromedia.com/
devnet. Reprinted with

 permission.

�� • mxdj.com 2 • 2006

													var	myData:Array;

													function	initializeAp-

plication(event)	

														{	

												//We	are	called	by	the	

creation	complete	event	of	the	appli-

cation	tag	

												//Instantiate	a	new	Array	

														myData	=	new	Array();	

														}	

]]>	

					</mx:Script>	

					<mx:DataGrid	id=”display_grid”	

dataProvider=”{myData}”	width=”90%”	

height=”90%”/>	

					<!--Created	a	DataGrid	and	bound	

the	dataProvider	to	myData-->	

</mx:Application>

 The example specifies the dataPro-
vider property for the DataGrid control as
a variable named myData. In the creation-
Complete event of the <mx:Application>
tag, the example calls initializeApplica-
tion, which instantiates myData as an
instance of Array.
 When you run this example, you a
DataGrid control and other information
displays. Next, you will add the function-
ality.

Flash communication
Server
 Flex and FCS create a client/server
environment. Using the MXML code in
the flexFCS_01.mxml file, Flex creates
a client application that executes on a
user’s machine. FCS acts as the server
in this relationship, providing data and
updates to the client.
 This article is about interfacing two
components, not programming FCS. For
more on FCS check out the books men-
tioned in the beginning of the article. For
now, I provide a basic server-side script to
demonstrate the interface.
 Place file, main.asc (included with the
ZIP file in the Requirements section) on
FCS server in a directory called random
in the \Flash Communication Server MX\
applications\ directory.
 This file sets up a simple shared object
on FCS server. The object has 10 slots,
named 0-9. Each of these slots will have
a random number. This random number
changes every two seconds and FCS
pushes the results to the client.

The connection
 At this point you have a simple client
application, created in Flex, and a FCS
application. Now you will make the client
display the changing data from FCS. You
accomplish this in two phases. First, you
connect to FCS and the Remote Shared
Object. Second, you receive information
back from FCS and process it for display
purposes.
 First, add the following highlighted
lines to Example 1 (flexFCS_01.mxml) or
open the solution file, flexFCS_02.mxml,
which is available from the fcs_flex_
sample.zip that you downloaded at the
beginning of this article.

Example 2: flexFcS_02.mxml (additions

are highlighted)

<?xml	version=”1.0”	encoding=”utf-8”?>	

<mx:Application	xmlns:mx=”http://www.

macromedia.com/2003/mxml”		 	

		

		xmlns=”*”		 	 	

													

		creationComplete=”initializeApplicati

on(event)”>	

		

	<mx:Script>	

	

	<![CDATA[

		var	myData:Array;	

		function	initializeApplication(event	

)	

		{	

		//We	are	called	by	the	creation	com-

plete	event	of	the	application	tag		

		

		//Instantiate	a	new	Array

		myData	=	new	Array();	

		

		//Connect	to	the	flash	communication	

server.

		//we	are	using	rtmp	as	our	first	

protocol	attempt	 	 	

	

		my_fcs.connect(‘rtmp://[your_server]/

random’);

		

		}	

				

]]>	

	

	</mx:Script>	

	

	<mx:DataGrid	id=”display_grid”	

dataProvider=”{myData}”	width=”90%”	

height=”90%”/>

		

	<!--Created	a	DataGrid	and	bound	the	

dataProvider	to	myData-->		

	<!--Instantiate	an	FCSService	compo-

nent-->

	<FCSService	id=”my_fcs”

		closed=”	alert(‘server	closed	con-

nection’)”	 	 	

		

		rejected=”	alert(‘Server	rejected	

connection’)”

		failed=”	alert(‘Server	connection	

failed’)”	/>

		

	<!--Instantiate	an	SharedRemote	com-

ponent	and	bind	it	to	the	FCSService	

tag	above-->

		

	<!--The	name	property	of	this	tag	

must	match	the	argument	in	the	

SharedObject.get	command	on	the	server	

file	main.asc-->

	<SharedRemote	id=”my_remote1”		

										

			name=”RandomNumbers”	 	

										

		service=”{my_fcs}”

		failed=”alert(‘Shared	Object	

Failed’)”

		status=”alert(‘Status	‘	+	event.info.

level	+	‘	‘	+	event.info.code);”/>

</mx:Application>	

 In this version, I added three impor-
tant blocks of code:
• An FCSService component
• A SharedRemote component
• A call to the FCSService object’s con-

nect method

 First, examine the FCSService compo-
nent. The FCSService has an id of my_fcs,
which you use to reference the instance
going forward. You also defined event
handlers for the closed, rejected, and
failed events. If an end user encounters
any type of problem, an alert box will dis-
play.
 Second, the SharedRemote com-
ponent has an id of my_remote1. The
service property is set to {my_fcs}, the id
of the FCSService component. This allows
any FCSService component to have mul-
tiple shared remote objects defined. The
SharedRemote component also defines
event handlers for the failed and status

2 • 2006 mxdj.com • �5

messages. If an end user encounters a
problem with the shared object, an alert
box displays on the screen.
 Finally, the initializeApplication han-
dler calls my_fcs.connect(‘rtmp://yourS-
erverName/random’). The name, random,
is the name of the application created
when you placed the main.asc file into
the random folder on your FCS.
 When you invoke the connect meth-
od, you attempt to make a connection
initially through RTMP to FCS. In reality,
you actually have several protocols/port
combinations which will be tried before
a connection occurs. While this concept
is outside the scope of this article, please
read “Tunneling Macromedia Flash
Communications Through Firewalls and
Proxy Servers” for more information.
 If you run the application at this point,
you will see a DataGrid, much like the
previous example.
 If an alert box appears, ensure that
your Flash Communication Server is run-
ning and that you placed the main.asc
file in the proper directory as explained
in the “Flash Communication Server” sec-
tion.

The Good Stuff
 After the last round of revisions, your
application can receive updates from the
server, but can’t do anything with them
yet. Now you’ll add that functionality.
 Add the highlighted code below to
Example 2 (flexFCS_02.mxml) or, open
the solution file, flexFCS_03.mxml, which
contains all of the changes. The flexFCS_
03.mxml file is included in the fcs_flex_

sample.zip that you downloaded in the
Requirements section of this article.

Example 3: flexFcS_03.mxml (additions

shown in bold):

<?xml	version=”1.0”	encoding=”utf-8”?>

<mx:Application	xmlns:mx=”http://www.

macromedia.com/2003/mxml”		 	

		

		xmlns=”*”	

		creationComplete=”initializeApplicati

on(event)”>

	

	<mx:Script>

	

	<![CDATA[

		var	myData:Array;

		function	initializeApplication(event	

)

		{

//We	are	called	by	the	creation	com-

plete	event	of	the	application	tag

//Instantiate	a	new	Array

	myData	=	new	Array();

	//Connect	to	the	flash	communication	

server.

	//we	are	using	rtmp	as	our	first	pro-

tocol	attempt

	my_fcs.connect(‘rtmp://[your_server]/

random’);

}

	function	syncData(event)	

{

	var	currentIndex:Number;	

	var	currentNode:Object;	

	for	(var	i=0;	i<event.actions.

length;	i++)	

{	

/*	This	is	cheap	and	cannot	be	relied	

upon,	however,	for	this	example:	our	

slot	‘names’	are	all	numeric	and	can	

be	used	as	Indexes	into	the	array.

These	names	are	set	when	we	do	the	

random_so.setProperty(“0”,	...);	in	

the	main.asc	file.The	“0”	is	the	slot	

name	

So,	in	this	case	the	slots	are	named	

0,1,2,3	and	so	on.	*/	

	currentNode	=	event.actions[i];	

	/*	Whenever	we	receive	a	synchroniza-

tion	event	from	FCS,	it	is	provided	

as	an	array.Each	element	in	the	array	

has	a	code,	which	defines	the	type	of	

event	we	are	receiving.	

In	this	case,	we	are	only	looking	

at	two	of	the	possibilities,	a	slot	

changed	or	the	whole	array	should	be	

cleared	*/	

	switch	(currentNode.code)	

{	

	case	“change”	:	

//This	slot	has	changed	and	needs	to	

be	

//updated

if	(myData[currentNode.name]	==	

undefined)		 	 	

{	

//Even	though	FCS	sees	this	data	as	

//a	change,	this	is	the	first	time	we	

have		

//data	in	the	slot	

	//So	we	add	it	to	our	data	structure	

	myData.addItemAt(currentNode.name,	

�6 • mxdj.com 2 • 2006

2 3

C
O

P
Y

R
IG

H
T

 ©
20

06
 S

Y
S

-C
O

N
 M

E
D

IA

 A
LL

 R
IG

H
T

S
 R

E
S

E
R

V
E

D

	{	label:event.data[currentNode.name	

].label,			 	 	

		

	value:event.data[currentNode.name	

].value	});	

	//Notice	above	that	we	are	using	the	

{	}	as	a	shortcut	to	create	a	new	

object	from	the	data	we	received	from	

FCS	

	//This	is	do	to	the	databinding	prop-

erties	of	flex.	

	//If	we	do	not	create	a	copy	of	the	

object,	flex	will	try	to	update	FCS	

server	everytime	we	make	a	change	to	

the	object	

	//This	can	be	desireable,	but,	it	is	

not	for	this	example		 	

	

	}	

		else	

	{	

	//We	have	seen	data	for	this	slot	

before,	so	we	update	our	data	struc-

ture	

	myData.replaceItemAt(currentNode.

name,

	{	label:event.data[currentNode.name	

].label,			 	

	value:event.data[currentNode.name	

].value	});		 	 	

		

	}	

		break;	

		case	“clear”	:	

	//FCS	has	instructed	us	to	clear	all	

of	our	existing	data		 	

		

	myData.removeAll();	

	break;	

		}

			}	

				}		

]]>

</mx:Script>

<mx:DataGrid	id=”display_grid”	

dataProvider=”{myData}”	width=”90%”	

height=”90%”/>

<!--Created	a	DataGrid	and	bound	the	

dataProvider	to	myData-->

<!--Instantiate	an	FCSService	compo-

nent-->

<FCSService	id=”my_fcs”

	closed=”	alert(‘server	closed	con-

nection’)”	 	 	

	rejected=”	alert(‘Server	rejected	

connection’)”	 	 	

	failed=”	alert(‘Server	connection	

failed’)”	/>

<!--Instantiate	an	SharedRemote	com-

ponent	and	bind	it	to	the	FCSService	

tag	above-->

<!--The	name	property	of	this	tag	

must	match	the	argument	in	the	

SharedObject.get	command	on	the	server	

file	main.asc-->

<SharedRemote	id=”my_remote1”

		name=”RandomNumbers”

		service=”{my_fcs}”

		failed=”alert(‘Shared	Object	

Failed’)”		 	 	

		

		status=”alert(‘Status	‘	+	event.info.

level	+	‘	‘	+	event.info.code);”

	sync=”syncData(event)”/>

</mx:Application>	

 In this version, you added two impor-
tant items. You specify an event handler
for the sync event of the SharedRemote
component and added the code for that
handler.
 First, let’s talk about the syncData
function. This is the function that per-
forms all of the work in preparing
the data for display. The event object
passed to this function always contains
two very important properties: actions
and data.
 The actions property is an array
that will contain a variable number of
elements based on the changes that
occurred on the Flash Communication
Server. FCS adds one object to this array
for every action it implements on the
client. Examples of actions include: clear
all of the data, delete a single element,
change the value of an existing element,
and so forth.
 When you look at the individual ele-
ments of the actions array, you will always
find a single property named code, and
for some codes an additional property
called name. The data structure looks like
the following:

event	

	

	actions	

		

		o	0	-		

		code	

		[name]	

		o	1	-		

		code	

		[name]	

		o	2	-		

		code	

		[name]	

	data	

 At the start of the syncData function,
the code loops through the actions array
and examines each element. You perform
a switch statement on the code property,
which defines the type of action you can
perform. For this example, you are only
interested in two specific codes: change
and clear.
 A clear code simply means that all of
the current data should be cleared. The

“Flex and FCS
provide the foundation

for Internet applications
that deliver continually

changing data to
the desktop”

�� • mxdj.com 2 • 2006

24/7

Visit the

Website Today!

24/7

code executes a removeAll method on
the data structure.
 A change code indicates that a slot
has changed on the server and provides
the name of this slot through the name
property. In this case, the slot names are
0-9.
 The data array is the other extremely
important part of this equation. The data
is an associative array of the slots defined
on FCS. So, in this example, data has slots
named 0-9.
 When you receive a change code, you
also receive the name of the changed
slot. This name allows you to look up the
new slot information in the data array.
 There are two more issues to under-
stand, however. First, FCS informs the Flex
client of changes to the data, however,
it is up to the client program to analyze
this data and determine whether it is new
content to store or existing content to
replace.
 In this simplified example, you simply
check to see if data of this slot name
exists in the myData array. If it does, you
replace that item with the new data. If it
does not, you add it.
 Second, and perhaps more complicat-
ed, is the interaction of the data from FCS
with the Flex data binding mechanism.

data Structure Review
 An object is a collection of properties
and it is one of the basic Flex data types.
However, objects behave differently than
numbers or strings.
 For example, examine the following
piece of code.

myNum1	=	5;

myNum2	=	myNum1;

myNum1	=	6;

 At the end of this code, myNum1 con-
tains the number 6, and myNum2 con-
tains the number 5; however, this same
example does not hold true for objects.
If you assign one object to another, as in
the following example:

myObj2	=	new	Object();

myObj2.test	=	3;

myObj2.case	=	4;

myObj1	=	myObj2;	

 Flex doesn’t actually make a copy of
the object, but rather myOb1 contains

a reference to myObj2. So, there is one
copy of all the data stored in the object
and both names can be used to access
this data. Therefore, myObj1.test and
myObj2.test are really the same variable.
 This can cause an issue when you
receive a new object from FCS. For exam-
ple, if you receive a change for Slot 1, the
intuitive approach might be to assign the
data coming from the FCS shared remote
object directly to your myData array
using an assignment (=) operator.
 However, as noted above, if you sim-
ply set two objects equal to each other,
Flex will be unable to make a copy, but
merely provide a new reference or way
for you to access the same data. This
means that any time you attempt to
make a change to an element in your
myData array, in reality, you are attempt-
ing to change the shared remote object
that FCS created.
 The implication is that every user
running your application will receive a
change made by a single user. When used
properly this can be beneficial, however,
in many cases it can cause significant
performance reduction and potentially
prevent users with slower connections
from accessing the application.
 A quick way to resolve this issue is to
create a brand new object every time a
new piece of content arrives from Flash
Communication Server and then use that
newly created object in the myData array.
Any changes made from within a single
client’s application will affect a user’s

copy of the data but will not change val-
ues in the shared remote object used by
everyone.
 The final step required to display
incoming data from FCS is to provide
the name of the function syncData to
the sync event of the component. Now,
whenever data changes on the server,
a sync event will be broadcast from the
RemoteShared component and the sync-
Data function will be called to process
the received data.

The Result
 When you run this application, you
have 10 rows in a DataGrid. Every two
seconds, when the data changes on the
Flash Communication Server, this data
will be pushed to all connected clients,
keeping them in sync.
 While this is a rudimentary example,
it shows how you can incorporate a Flash
Communication Server remote shared
object into your application in a way that
is familiar to you, and keeps the meta-
phor established by the WebService tag.
It demonstrates the very basic technique
of dealing with returned data and illus-
trates the general concept of the server
technology.

Michael Labriola is a founding partner

and senior consultant at Digital Primates

IT Consulting Group. Digital Primates

analyzes client business processes and

develops custom solutions that extend the

latest technology.

Advertising Index

Advertiser index is provided as an additional service to our readers. Publisher does not assume any
liability for ommissions and/or misprints in this listing since this listing is not part of any insertion order.

 Advertiser URL Phone Page

 CFDynamics www.cfdynamics.com 866-233-9626 20

 Community MX www.communitymx.com 27

 EdgeWeb http://edgewebhosting.com 866-334-3932 5

 Flashforward www.flashforwardconference.com 15

 Hosting www.hosting.com 31

 InterAKT www.interAKTonline.com/macromedia 4031 401.68.19 3

 Intermedia www.intermedia.net 888-379-7729 11

 Macromedia Studio 8 www.macromedia.com/go/8_studio8 415-252-2000 52

 Metaliq www.metaliq.com 415-642-3332 35

 Stream57 www.stream57.com 212-909-2550x1012 6

 Vitalstream www.vitalstream.com 800-254-7554 2

WebAppCabaret www.webappcabaret.com/jdj.jsp 866-256-7973 51

50 • mxdj.com 2 • 2006

 Advertiser URL Phone Page

 CFDynamics www.cfdynamics.com 866-233-9626 20

 Community MX www.communitymx.com 27

 EdgeWeb http://edgewebhosting.com 866-334-3932 5

 Flashforward www.flashforwardconference.com 15

 Hosting www.hosting.com 31

 InterAKT www.interAKTonline.com/macromedia 4031 401.68.19 3

 Intermedia www.intermedia.net 888-379-7729 11

 Macromedia Studio 8 www.macromedia.com/go/8_studio8 415-252-2000 52

 Metaliq www.metaliq.com 415-642-3332 35

 Stream57 www.stream57.com 212-909-2550x1012 6

 Vitalstream www.vitalstream.com 800-254-7554 2

WebAppCabaret www.webappcabaret.com/jdj.jsp 866-256-7973 51

